
Review Article

Networks for Computing Needs
ASHWIN GUMASTE
IIT Bombay

*Author for Correspondence: E-mail: ashwin@cse.iitb.ac.in

Proc Indian Natn Sci Acad 84 No. 2 June 2018 pp. 371-384
 Printed in India. DOI: 10.16943/ptinsa/2018/49339

What does it mean?

As computing power grows and follows Moore’s law,
material science is unable to meet such computing
requirement within a single processor. Extremely large
scale integration and device technology that enables
us to go to sub-20 nm processes and hence pack
millions of logic gates in a single chip. Even such
integration is not enough to meet the ever growing
needs of users, especially with the world-wide-web
throwing a plethora of applications year-on-year. The
compounded-annual growth rate (CAGR) of data-
traffic in the Internet is almost doubling every other
year, and this huge amount of data requires processing
that needs to be done across various data-centers in
the Internet. Combine that with the disparate
requirements of the data such as voice, video based
services and crunching for numbers to provide real-
time analytics that are quintessential to providing
advanced services. The goal of this chapter is to
understand what does it mean when processing entities
need to be connected to create a virtualized
environment to meet user needs. The underlying
network becomes a tactical glue that binds many
processing entities into a virtualized environment that
cumulatively adds the computing power of disparate
entities. Networking began as a way to transport data
and voice and is now the key enabler for the Internet
and all the applications subtended by the growth of
the Internet. Networking technologies have
progressed through wired and wireless mediums from
bit-rates of a few Kbps (kilobits per second) to several
hundred Gbps (gigabits per second) in the optical fiber.
The deployment of the network as an aid to computing
marks an interesting and important revolution in the
next generation of computing. In effect, the onus of
making processing more rigorous has been replaced
by making processors behave as a large single unit

across a network. This makes next generation
computing effective and pragmatic from cost,
performance and usability standpoints.

Networks have transgressed from copper cables,
to shielded twisted pair based cables, to networks in
the air (wireless) and to use of the optical fiber.
Networks have become smarter from just transporting
bits from one place to another to providing application
awareness that is quintessential to next generation
applications and computing. High Performance
Computing (HPC) cannot become pragmatic without
the underlying network. The network is used between
processors, processors and memories, processor
blades and server farms, and between data-centers.
Each type of interaction between computing entities
(processors, servers, memories) requires a different
type of networking flavor — tailored to meet the key
aspects of the interaction. Networks for computing
needs have transformed processor development and
related data-centers theatre seen as the brain of the
Internet.

Perhaps the most important feature that a
network can provide towards HPC facility is that of
latency. Latency determines the usefulness of a
network, especially from the perspective of virtualizing
computing entities. Lower the latency, between the
interaction between computing resources across a
network. Low-latency architectures can be achieved
in two ways: (1) by providing large bandwidth between
computing entities to move big amounts of data from
one place to another and (2) creating novel
architectures that facilitate low-latency interconnection
across the entities in a network. Network architecture
plays a strong role in facilitating low latency in a HPC
environment. The choice of technology, protocol and
the scalability of the system all eventually determine
latency requirements in an HPC environment.

Published Online on 12 June 2018

372 Ashwin Gumaste

A second important feature that networks
provide to HPC is the agility provided due to
reconfiguration of the network interconnection graph.
Significant research has gone into creating networks
that provide reconfigurability. Regular network
architectures were initially deployed that had
predictable routing indices. These are now been
replaced with customizable irregular network fabrics
that can create extremely reconfigurable network
fabrics — essential for HPC applications.

HPC applications have by themselves become
very complex requiring rapid-back-and-forth
communication between computing entities such as
servers across an interconnection network. Apart
from agility there is also the issue of providing one-
to-many service across a network backbone.
Popularly called as data multicasting the service is
critical for easy and fast replication of data from one
computing entity to several others in a parallel manner.

Scalability of providing a multitude of network
services across an HPC environment is another key
feature that measures HPC performance. Another
figure of merit for HPC systems is as to how many
computing entities (servers or storage devices) can
be connected without loss of performance. The trade-
off is that when we have N entities that need to be
connected, we classically face the N2 problem —
that of creating a non-blocking paradigm with N2
cross-bar switches. As N increases, the size of such
an interconnection paradigm becomes unmanageable,
expensive, and hence difficult to implement. So how
do we create next generation HPCs and data-centers
with several 10s of thousands of computing entities
while meeting the requirements of disparate services?
This problem has received substantial attention in the
recent past, and we will examine the various
approaches towards solving such interconnection
paradigms.

From a protocol perspective, there is an
interesting yet problematic trade-off that one
encounters. Simply put, a protocol data unit (PDU)
that can scale, requires significantly larger header
implying that for processing the header large amount
of time is lost thus compromising on latency. It is no
wonder that protocols like Infiniband that have
excellent latency do not scale very well. In contrast,
protocols such as IP, especially in IPv6 format scales

very well but is plagued by its overhead and control
processing implying very poor latency. Much effort
has been devoted to the design of scalable yet latency-
sensitive protocols. To this end, we will outline the
correct protocol requirements that would aid towards
the design of next generation protocols for HPC
applications.

Application development is what is dictating
future HPC requirement. Applications are becoming
exceedingly parallel in behavior with both symmetric
parallelism and asymmetric parallelism. In symmetric
parallelism, entities communicate with each other in
a homogeneous parallel structure, while in asymmetric
parallelism, a group of M entities are continuously
used for communication and computation by a group
of N-M entities in an N-node HPC structure. In the
latter case, there is tremendous stress on the
interconnection fabric, especially when we consider
that due to application behavior it is impossible to
predict the stochastic behavior of the interconnection
pattern between the computing entities.

The last pieces of the HPC interconnection
puzzle are security and energy consumption. HPC
environment requires higher level of security on
account of sensitive applications as well as to conserve
processing power on legitimate tasks. Usually, physical
security is a first step towards attaining HPC security,
but when the HPC machine is connected to the outside
world, the degree of security preparedness becomes
a challenge. Securing HPC systems in the context of
next generation applications and pertinent cyber-
threats is of paramount importance in very large HPC
clusters. How does one continue to be ahead in the
security framework when attacks can be launched
by users both legitimate and otherwise?

Processing entities consume huge amounts of
energy. Energy consumption is often cited as a
limitation factor to the size of an HPC system. There
are three aspects of energy consumption associated
with a data-center/HPC system: (1) Energy required
by the processing entities; (2) Energy required for
cooling the entities and (3) Energy required for the
networking protocol that facilitates communication
between the processing entities (servers). Our main
focus is on the third aspect of energy consumption
but it is also believed that an efficient communication
protocol also optimizes the energy consumption at the
servers.

Networks for Computing Needs 373

Networks for Computing

As HPC system grow, the underlying interconnection
fabric i.e., the network becomes important. The
architecture of the network, its connection
methodology and ability to adapt to HPC requirement
are all figures of merit to eventually judge the HPC
system.

Networks in an HPC system can be classified
into three types: on-board interconnects that are
capable of connecting chip-sets among each other;
server to server interconnects that facilitate intra-HPC
interconnection; and data-center to data-center
interconnect, as is prevalent to create a cloud
computing environment. Each of these classifications
requires a different type of network architecture,
protocol and connection methodology. We will examine
these in detail now.

Chip Interconnection

Chip interconnection has become an important issue
in recent times. One can say that chip interconnection
technology has made progress in discrete steps. Wire
based interconnection on breadboards and
rudimentary PCBs were perhaps the first
interconnection technology. The number of discrete
wires, the line-rate that the wires could support, and
distance between chips were all limitations to scaling
such an interconnection system. Then came PCB with
multiple layers, whereby PCB tracks were used in
some of the many layers as an interconnection pattern.
The tracks in the PCBs also had limitations in terms
of distance and bandwidth they supported. It must be
noted here, that as the line-rate between chips
increased, the behavior of the tracks had to be
carefully analyzed to support such increase. PCB
tracks which were regular conductors of the bit-
stream running between chips will have extreme
waveguide properties exhibited by them, as the line-
rate increases. The frequency domain analysis of a
high-speed signal (essentially now an RF-signal) will
have harmonics that will create a frequency domain
response of the track. The track layout and the
material used to build the PCB will determine how
severe the response would be. As a rule of thumb,
higher the permittivity constant of the material used,
better its ability to transport high-speed signals. High-
speed signal transfer is extremely crucial to achieve
the economies of scale in HPC sub-systems.

Processors are becoming very fast and all the
associated chip-sets that are connected to the
processors also must be able to communicate at very
high speeds with the processors. For example, it is
common today to run memories at several 100 MHz.
Note that at such speeds, the response of the line-
rate is not just a digital waveform, but also exhibits
microwave characteristics. Communication between
processors and server IOs can be in fact at much
higher line-rates such as at 1 Gbps or 10 Gbps. At 10
Gbps, the pulse width is 100 picoseconds and the
probability of error can be high. Often a 10 Gbps line
between a processor and an IO interface is divided
into 4 parallel lines with error coding on each line.
Such a mechanism is called XAUI. XAUI allows for
slower-speed communication using parallel lines to
achieve overall high-speed throughput.
Complementing XAUI is the PCI-express standard
that also facilitate communication at 10 Gbps speeds.
PCB design at such high-speeds is an intricate affair
and involves pre-layout and post-layout signal integrity
analysis. Schematics are first designed that enable
the interconnection pattern between the chips that
are to be connected. Then, we create a layout of the
schematics so that the exact placement of the chips
on the PCB is evaluated. The layout is followed by
routing of the signals among the various chips used.
Impedance matching is one of the most important
tasks during signal routing in the PCB. Most of the
chips are specified to 50 Ohm impedance matching.
This is a right amount of impedance to drive current
to create the necessary potential difference between
chips to enable signal flow. Impedance matching
techniques vary. At higher-speed the technique
assumes microwave like characteristics. One has to
model the trace as a waveguide. A waveguide is a
medium that assumes flow of microwaves and is a
boundary condition to the well-known electromagnetic
propagation equations called Maxwell’s Equations.
Upon modelling a waveguide, we are able to perform
signal integrity analysis to finalize if the signal will
indeed correctly be transported between the chips.
As part of routing we also need to ensure that the
farthest route is well within the specified maximum
for that particular line-rate. Another factor to consider
is clock-skew. On a PCB there are various clocks,
each of which determine the clocking of different chips
as well as are used as drivers on the same chip. On
large PCBs, clock skew can be an issue due to

374 Ashwin Gumaste

differential delay between the same clock signal
reaching two different chips. Another aspect of
differential delay that must be considered is when
there are multiple parallel lanes between two chips.
Such designs are common between memories and
processors or processors and IOs. For example, all
RAMs have multiple address and data-lines that are
interconnected to the processor. These lines must have
exactly the same length on the PCB. If this is not
attained then there is the issue of differential delay.
Differential delay can potentially lead to loss of
synchronization, eventually causing irrecoverable
errors. Such errors are very difficult to be rectified in
bulk. Lane matching is a well-known technique used
to ensure that length of all PCB traces are same that
run across two chips and need to act as parallel lanes.
The process of layout is hence iterative and involves
routing the traces and then ensuring that system
parameters are met.

In some cases, the routing and layout problem
is done using software in an automated fashion. In
most cases, the CAD software for routing and layout
is augmented by human intervention. The latter is
generally the default industry practice. Simulation
models are available to model the signal integrity on
traces. There is also a temperature dependent factor
that should be considered in HPC environments when
PCBs are designed. In most cases, the temperature
considered is up to 50oC, but in some industry/military
applications we should go up to 70oC to check if the
signal integrity is as per what is desired. A very simple
way to check signal integrity is to run the simulation
model and manually observe the “eye pattern”. If the
eye “opens” well enough, then it is quite clear that
the signal integrity is intact. If on the other hand the
eye opening is negligible then one can assume that it
will be difficult to isolate the “0”s from the “1”s.

Future of on-board communication technology:
as line-rates increase with processing power, there is
an absolute need for on-board technology to change.
This change is about to happen. There is a strong
research push towards inculcating photonics
technologies as an enabler for chip-to-chip
communication, popularly called as optical
interconnects. Optical interconnect technology is
today in its infancy, but is slated to be an important
breakthrough for HPC applications. There are two
clear advantages of using optical interconnects: optics

through fiber provide for a low loss medium and
secondly there is seemingly near infinite bandwidth
offered by the optical fiber. Optical fiber is the default
choice for communication paradigm for the Internet
especially in the core of the Internet. The reliability
of the optical fiber as a communication medium is
second to none and it serves also as a low-cost
medium. Optical fiber is able to provide about 30 THz
of bandwidth in its default communication band i.e.,
when light is transmitted through the fiber at 1.5
micrometers. This translates to 30 Tbps of bandwidth
when we deploy simple ON-OFF keying (OOk)
techniques. However, current electronics are unable
to create a switched bit-stream at such high line-rates.
This difference between high-speed optics and low
speed electronics is called the opto-electronic
bottleneck. To absolve this opto-electronic bottleneck,
a solution is to divide the bandwidth into frequency
specific channels. Such kind of frequency division
multiplexing is commonly deployed to make good use
of the optical fiber. Since the frequencies used are of
the form of 193 THz (corresponding to 1.5
micrometers), it is more convenient to state the
multiplexing pattern as wavelength division
multiplexing as opposed to frequency division
multiplexing. On each wavelength, we can modulate
a slower speed electronic signal and several such
wavelengths with individual signals modulated create
a composite wavelength division multiplexed (WDM)
signal. WDM technology for high-speed
communication has significantly matured and it is now
a question of time when it would be used as an
interconnect technology. When the channels in the
WDM signal are spectrally close, then the composite
signal is called Dense Wavelength Division
Multiplexing (DWDM), while if the channels are far
apart in the spectral domain, then the resulting signal
is called Coarse Wavelength Division Multiplexed.
Multiplexing technology uses optical components such
as fused fibers, liquid crystal on silicon substrates,
digital lightwave processors (DLP), and
interferometers.

The key to adapting the optical technology within
the domain of interconnects for HPC application is in
the ability to miniaturize the components.
Miniaturization must be such that the components must
“fit” within the chips on-board a PCB. Of critical
importance is the ability to induct optical sources that
can generate data. Classically, lasers are used to

Networks for Computing Needs 375

generate a coherent source of light. Miniaturization
of lasers is a difficult task — it requires substantial
semiconductor enhancements and the yield could be
substantially low. A key difference between lasers
required for commercial optical communications for
transmission purposes (long-distance) versus lasers
required for optical interconnects in a chip is the power
of the laser within the PCB environment is
significantly less.

In this regard, an important breakthrough is that
of the Vertica Cavity Surface Emitting Laser
(VCSEL). Unlike transmission lasers, that require a
fiber to be fused into the laser almost perpendicular
to the lasing action, VCSELs can be built with fibers
parallel to the surface so that the assembly of fibers
into the chip can be realistically achieved. VCSELs
produce substantially lesser power than lasers, but
this is perfectly fine in the ambit of HPC environments
where distances are small and the lesser power
produced is sufficient to achieve optical
interconnections. VCSEL technology is now
appearing for directly interconnecting chips in large
scale integration. A large number of VCSELs can be
grown on the same substrate to create a parallel
transmission medium whereby each VCSEL can
support a particular frequency, and together they can
be coupled together to form a composite WDM signal.
Such an arrangement can then be supported by
another transmission innovation called plastic fibers,
whereby instead of using silicon based fibers, less
expensive plastic is used to create the fibers. Plastic
fibers are easier to manage and are also more durable
to the consumer-centric server interconnect
application. It is envisaged that the combination of
plastic fibers with VCSEL arrays will form the
backbone of optical interconnect applications. The role
of photonics is likely to go beyond transmission and
communications within HPC environment. It is
perhaps possible in the future to have optical
processors, whereby wavelength interaction using
non-linear effects such as cross-phase modulation and
four-wave mixing can create logical gates that work
at speeds significantly faster than what is achieved
with silicon technology. Newer materials such as
Indium Phosphide used for creating monolithic lasers
and embedded photonic components would potentially
change the interconnection pattern in an HPC
environment. Recently, Graphene has been added to
the list of materials with smart photonic properties,

and the abundance of Graphene combined with its
optical properties is likely to be a game-changer in
the HPC interconnection scenario.

Server Interconnection

A second aspect of network interconnection
architecture is to connect servers to each other to
create an HPC cluster. Server interconnection is
perhaps the most important interconnection
architecture within the HPC environment. The key
challenge to server interconnection is to create a
scalable interconnection paradigm. Scalability for
network interconnection exists in two forms: (1)
scalability in number of servers that can be connected
and (2) scalability in terms of performance. The
network architecture plays a strong role in determining
the performance of the HPC system. There are many
possible network architectures to choose from and
each architecture has its pros and cons. Typically in
contemporary HPC environments or data-centers,
servers are represented as blade servers or stand-
alone rack-mounted servers. In either case, such
servers have front mounted or back mounted
interfaces for interconnection. Such IOs, typically are
supported inside the server with network interface
cards (NICs) that are pluggable modules into the
server. The back-end of a NIC is connected via a
PCI-express bus. NICs can support a multitude of
protocols, but typically the line-rate is either 100 Mbps
or 1 Gbps or 10 Gbps. Off late, 10 Gbps server ports
are appearing in the market and it is anticipated that
there would be an exponential surge towards such
adoption in the very near future. Server NICs support
two kinds of PHY — either an optical PHY or a copper
PHY (physical interface). The optical PHY typically
comes with a pluggable optical module, which could
be fitted into a PHY-slot that can encompass the
module.

Servers need to be interconnected to each other
to create a large HPC environment. The
interconnection fabric must scale and also provide a
non-blocking cross-connect functionality. Creating a
large non-blocking interconnection fabric is a
challenge. Typically, as the number of servers
increases, the number of interconnection points (cross-
bar switches) increases exponentially (square of the
number of servers to be interconnected). Creating
such an interconnection fabric is not feasible.

376 Ashwin Gumaste

There are hence multiple methods of creating
modularly scalable interconnection fabrics. Such
network architectures usually compromise in some
feature of the interconnection fabric.

A commonly used methodology for
interconnection fabrics is to use regular graphs. Graph
structures such as ShuffleNet, De Bruijn graph, Torus
and Hypercube are well known parallel processor
environments. The problem with these regular
structures is that these do not scale very well. A
common mechanism towards interconnection within
the HPC environment hence is to stack up switches
(generally commodity switches), that facilitate a tree
like structure. Usually multiple tiers of nodes are
connected across these switches. The advantage of
a tree-shaped interconnection topology is that it can
be grown quite well with possibility of incremental
growth.

The manner in which HPCs are developed using
tree shaped interconnection is that a rack of servers
is connected to a top-of-the-rack switch (TOR-
Switch). Many TOR switches are further back-
connected to a root switch. This type of a design
requires the root switch to have a large number of
ports — equal to the number of racks that are part of
the HPC environment. A slightly more scalable design
enables multiple levels of root switches so that there
is less restriction on the number of ports of a root
switch. Yet another efficient design uses multiple paths
between any two racks by using a Clos
interconnection network between TOR switches. To
obtain very large HPC clusters and data-centers, we
may break the clusters into pods whereby full non-
blocking switching is available within the pod, but
across pods only partially non-blocking switching is
possible. Such kind of network architecture requires
some degree of under-provisioning, whereby the
bandwidth in the higher tiers of the architecture is
less than the cumulative bandwidth of the servers in
the lower layers of the hierarchy. This means that if
all the servers in the lower layers of the hierarchy
were to communicate with some servers in another
branch across the hierarchical TORs, then the TORs
would not be able to provision full non-blocking
bandwidth between the discrete branches. In fact as
the number of servers in an HPC increases, under-
provisioning cannot be avoided.

An Example: If we have a 16 client port switch
and each servers’ interface is at 1 Gbps, then one
TOR can support 16 servers. We assume that the
switch has 2-4 network ports to back-haul the traffic
from the servers towards the root of the tree. Now
assume that the TORs are further back-hauled into
an aggregator switch which has 48 ports, each of say
10 Gbps. That means the network ports of the TOR
switch will also be at 10 Gbps, and 48 TORs can be
connected together. This means that the under-
provisioning factor is 10/16=62.5% Now, further let
us assume that the HPC just described is part of one
module, and several such modules are connected via
a core switch. Then what would be the number of
ports and line-rates that this core switch would
support? Such questions are difficult to answer without
choosing the protocol and technology. Each module
would cumulatively generate 480 Gbps of data. Even
if we assume the aggregator switch has 48 client ports
(connected to TORs) and another 48 network ports
used for connection to other module, then we have a
scalability limitation of 48 modules and an overall
under-provisioning ratio of 62.5%. The only way to
grow such a system is to replace the core and
aggregator switches with larger port-count switches.
This may not be possible with current cost and
protocol limitations.

Performance

Another factor of importance is to consider the
performance of such an HPC system. Within a
module, the longest route is of 4-hops long, while for
the larger multi-module HPC system, the number of
hops is 6. In general, we need 2logD hops where D is
the diameter of the HPC cluster. The performance
of such a system degrades in terms of both throughput
and latency. Latency will be described in detail in the
next section.

Servers within an HPC environment can have
optical interfaces or copper interfaces. Similarly, TOR,
aggregator and core switches can also have copper
or optical interfaces. However, for the purpose of
reliable transmission at higher line-rates it is always
desirable to have optical interfaces. Optical interfaces
are crucial from the perspective of provisioning large
amount of bandwidth within the HPC cluster.

The core or aggregator switches in a tree or a
multi-Clos network design become the bottleneck in

Networks for Computing Needs 377

an HPC environment. One aspect of scalability
limitation is that of providing scalability in terms of
number of supported server systems. Another aspect
is in terms of providing mechanisms for in-situ addition
of servers. Both these approaches require the
bandwidth of core switches in an HPC to be
upgradeable. With increasing line-rates this can be a
serious challenge. Copper interfaces have rate-
limitations and cannot scale beyond 10 Gbps, and that
too can be supported over a few feet. A large HPC
environment can be more than few tens of feet,
implying that copper based connections will not work.
The solution is to use optical interfaces for both reach
and support of larger bandwidth.

Optimal Backpane

Another aspect of server interconnection is the recent
use of the optical backplane. A backplane is either a
switching card that connects many servers together
or can be a mating connector set that facilitates any-
to-any connectivity. In typical HPC environments,
backplanes can be designed using stand-alone
switches or mating cards. The job of the backplane is
to provide connectivity between servers. It may be
passive, in the sense that it may not support switching
and connectivity occurs by a broadcast and select
architecture. The backplane may be active, in the
sense that it may actually support switching. In case
of a passive backplane, there need to be enough
connectors that provide one-to-many connectivity for
each mating server. The idea is that a server that
desires to communicate with other servers, does so
by sending the data on one of the traces of the
backplane. Other servers can all listen to this data
and will have to select whether to pick data by this
server or any other servers. In this system, if we are

to support K servers, then each server must have the
capacity to send data into the backplane, but when it
comes to receiving data, each server must be able to
receive from any of the K-1 servers. There is typically
no scheduling policy or efficient sharing of the
backplane in such a design. The limitation of such a
design is the number of receptors that can be
architected into each server line-card, since the server
backplane IO now has to process data that to decipher
whether to select or not. An active backplane is shown
in Fig. 4.2 below, and consists of many server line
cards connected to a switching card. The switching
card is the backplane. The switching card could be a
stand-alone pluggable unit or could be a mating
stationary connector that comes with the HPC chassis.
Scalability in such a case is restricted by the number
of line-cards that can be connected to the switching
card and creating a non-blocking switching fabric to
support the line-cards.

In both cases, of backplane design there are
design limitations in terms of scalability of the HPC
fabric. Even when we connect multiple backplanes
together, we are encountered with the same limitation
of being unable to provide a non-blocking fabric without
compromising on efficiency and performance. We
could, for example, have a severely compromised
under-provisioning ratio and scale up such a system.
But then the performance would be acceptable to
only certain traffic types. The problems of such a
system would be significantly enhanced, if we assume
that processors talk to memories or other processors
in executing a task using the switching behavior of
the larger system. Such a design is complex and must
always be optimized for performance. A general figure
of merit of the optical backplane is the amount of
bandwidth that it can support for switching.

Fig. 4.1: Data-center architecture arranged as a fat-tree

378 Ashwin Gumaste

In this regard, recent research has focused on
optical backplane design. In lieu of its tremendous
bandwidth availability, an optical backplane is proposed
as a scalable alternative to traditional electronic
backplanes. An optical backplane can be of active or
passive type. The active type of optical backplane
can be engineered using all-optical switches. All optical
switches can be fiber switches — switching signals
between ports without analyzing whether the signals
are of a particular wavelength; or could be wavelength-
level switches. Wavelength-level switches are used
in commercial core networking technology today and
are expected to become more popular as network
bandwidth grows. Such all-optical wavelength-level
switches are called as Wavelength Selective Switches
or WSS. These are primarily of a 1xN design, and a
group of these can be collectively engineered to create
a non-blocking cross-connect functionality. Shown in
Fig. 4.3, is an all-optical switch that can support up to
4 Tbps of bandwidth — better than any electronic
backplane. In this design the 1xN WSS is further re-

engineered to create an MxN architecture and several
such WSS are used together to create an optical
switch. Such a large optical switch with wavelength-
sensitive properties is also called a Reconfigurable
Optical Add-Drop Multiplexer. The architecture is
based on the broadcast and select concept, where
incoming signal is broadcast to the different arms of
the switch, and individual servers can select a
wavelength of their choice. The broadcast is done
with couplers/splitters, while the selection is done via
the MxN WSS. The inherent limitation of this
architecture is the switching speed of the WSS.
Typically WSS are built using MEMS or LCOS
designs and have a switching speed of a few
milliseconds which is clearly not acceptable in the
HPC environment. Despite this limitation optical
switching is being considered by a large number of
HPC builders either as an exclusive backplane
technology, or as a hybrid technology that has both
optical backplane and an electronic backplane. The
hybrid backplane is being considered for switching

Fig. 4.2: Example of an active backplane

Networks for Computing Needs 379

different kinds of flows. For example, flows among
servers can be classified into mice and elephant. Mice
flows are those that trickle between servers have low
granularity and generally require fast switching —
for them the electronic backplane is the best solution.
Elephant flows are rare, but when they do happen,
they require much coarser granularity and are present
for large time-duration. Elephant flows can hence be
switched by an optical backplane.

While WSS based backplanes are more scalable
than electronic backplanes on account of the larger
supported bandwidth — at higher levels there is a
scalability limitation.

Yet a third design that is being considered in the
backplane is a passive optical backplane. A recent
study showed that it was possible to have a near
infinitely scalable backplane using passive optics. Such
a design also uses a broadcast and select architecture,
but the selection process is made much easier using a
recently proposed superchannel concept that involves
creating OFDM modulated channels in the optical
domain. Such a design absolves the need for fast
reconfigurable optical switches relying primarily on
the broadcast domain for efficient interconnection.

Many HPC systems, each located at different
locations need to be connected across these locations
to provide a cloud-like environment. Each HPC
essentially could be a repository of information and a
processing unit. Such an individual HPC environment
is called a data-center, and many such data-centers
together become a cloud. The architecture of the data-
center is quite similar to the architecture of the server-
to-server interconnect. Generally the design uses tree
shaped topology to connect a server farm at the leaves,
with switches at branch and root interconnection
points. Such a design is commonly used in small and
medium data-centers and HPC clusters up to several
100 nodes or even for 1000 nodes (servers). Apart
from the scalability issue of the tree architecture, there
is a second scalability issue that of providing protocol
support — how do servers talk to each other, discover
each other and create a monolithic entity that can be
a virtualized environment for computing. Protocols
will be discussed subsequently.

Like server interconnection architectures data-
center architectures can also have alternate models
using some modified form of the Clos switching

architecture where by a combination of smaller port-
count non-blocking switches can suffice for a larger
switch design.

Data-center design can also be limited by
physical space, Internet connectivity and physical
location proximity issues. It is very common to deploy
many data-centers for a service provider network or
many HPC clusters spread across a Wide Area
Network. For example, a group of research labs may
each have its own HPC cluster with physical proximity
to it. All these HPC clusters can eventually be
interconnected to form a cloud like environment. Cloud
network design is a complex engineering process that
often involves managing bandwidth in the WAN that
connects the clusters and creating a virtualized
environment. Such an environment has to scale as
well.

One of the key features of today’s virtualized
environment is the use of Virtual machines (VMs)
that can be used to move across servers within a
cluster so that compute resources can be optimally
utilized. VM migration across servers within a cluster
is a well formulated process. However, VM migration
across servers which reside in separate data-centers
and HPC environments can be a complex issue. One
method to enable all the HPC environments behave
as a cohesive unit is to interconnect all the HPC
environments with a Layer-2 VPN. The advantage
of a Layer-2 VPN as opposed to a Layer-3 MPLS
VPN is in terms of cost and performance. As a rule
of thumb, keeping data in the lower stacks of the
Internet layering hierarchy is lower cost, more energy
efficient and is less prone to vulnerabilities. Hence a
L2VPN is preferred to a L3VPN to create a virtualized
environment. The other significant advantage of a
L2VPN is that L2-technologies are usually carrier-
class. Examples of such technologies are SONET/
SDH and Carrier Ethernet. SONET/SDH is a time-
division multiplexing protocol that enables the creation
of payload interspersed in the time-domain and then
sent into the optical fiber. SONET/SDH based
L2VPNs can be managed very well and provide the
necessary operations, administration, maintenance and
provisioning (OAMP) features required for service-
provider networks, especially critical for creating
cloud-like environments. SONET/SDH is essentially
a circuit switched technology and the bandwidth
granularities are quite coarse. This means that with

380 Ashwin Gumaste

such a technology, the advantage of statistical
multiplexing of packets is not available. The dominant
network protocol in the Internet is IP, and IP exists as
packets or datagrams. IP-packet switching and routing
is one of the foundation blocks of the Internet.
However, IP as a service is best-effort and not carrier-
class. Due to statistical multiplexing and best-effort
behavior IP even with MPLS does not offer the same
kind of OAMP features that SONET/SDH does. IP
can hence be a good residing technology on a SONET/
SDH based VPNs but such a solution is also
expensive.

What is required is an efficient packet
technology that provides good statistical multiplexing,
yet is able to guarantee carrier-class OAMP support.
Carrier Ethernet which is a carrier-class alternative
of Ethernet is here a good packet alternative. Carrier
Ethernet is quite different from Ethernet in the LAN,
whereby there is no MAC learning and no spanning
tree protocol. This avoids any probabilistic behaviour
of finding routes in a broadcast domain and creation
of loops. Forwarding in Carrier Ethernet is
accomplished based on backbone switch address in
conjunction with a series of VLAN tags or labels.
Two implementations of Carrier Ethernet exist: in the
IEEE and the IETF. The IEEE implementation called

PBB-TE or Provider Bridged Backbone-Traffic
Engineering uses VLAN based switching by mapping
incoming tagged or untagged services into network-
specific ISID tags that are service tags and which
are further mapped to backbone MAC addresses and
backbone VLAN tags. Forwarding is done exclusively
using the 60-bit backbone MAC address and VLAN
tags. In PBB-TE, paths are set up using a network
management system (NMS) that communicates with
core and edge bridges (PBB-TE switches) to assign
the requisite MAC and VLAN identifiers. The IETF
version of Carrier Ethernet is called Multi-Protocol
Label Switching — Transport Profile or MPLS-TP.
In this method, labels are used to forward packets
and label to packet mapping is again explicitly done
through the NMS. MPLS-TP is a scaled down version
of MPLS with no merging capabilities as well as no
unidirectional support. MPLS-TP also does not support
equal cost multiple paths.

Three types of services are defined in the gamut
of Carrier Ethernet — ELINE, ELAN and ETREE.
An ELINE service is a point-to-point bidirectional
connection that is created using switched Ethernet
identifiers at nodes across the network. An ELAN
service is an exemplification of a LAN environment
in a core network, while an E-TREE service is one in

Fig. 4.3: Stacked HPC architecture

Networks for Computing Needs 381

which there are many leaves communicating directly
to the root of the tree.

In addition to service definitions, Carrier
Ethernet also uses the IEEE 802.1ag Connectivity
Fault Management standard (or sometimes the Y.1731
standard) to check for faults in the network and ensure
a healthy network. As part of the 802.1ag standard,
connections are demarcated by management points,
and management points exchange information
periodically through heart-beat messages. Loss of 3-
consecutive heart-beat messages signals to the end
points that there is a fault in the connection and hence
a graphically alternate (pre-provisioned) path is
chosen.

Software Defined Networking (SDN) for Cloud
Environments

SDNs are recently being proposed as enablers to
launch any service on a cloud like environment, by
creating a “dumb” hardware platform into a user-
defined switching elements through a control plane.
The control plane and data plane interact through well
defined Application Programming interfaces and these

are used to describe the user requirements to the
hardware. SDNs have the potential of changing the
way we plan, route, traffic-engineer and evolve
networks.

SDNs are different from traditional networks in
the following ways: 1) separation of control and data
plane; 2) centralization of the control plane; 3)
programmability of the control plane; and 4)
standardization of north-bound Application
Programming Interfaces (APIs).

SDNs are being used to set up services in cloud
like environments with the goal that previous service
provisioning methods could only achieve so much and
with SDN implementation those horizons are being
further extended. By bringing user programmability
within the gamut of networking means that new
services can be implemented in a network that could
previously not be even envisaged.

SDNs have the potential of being a game-
changer for HPC environment as the user base of
HPC is quite diverse implying a strong role for user-
defined service support. In such a scenario, SDNs

Fig. 4.4: Stacked HPC architecture

382 Ashwin Gumaste

can control the HPC environment and resources such
as bandwidth management can be done through user-
defined interfaces. The SDN contribution to HPC is
that a traditional symmetric switching environment
within an HPC domain can now be made to a user-
defined, possibly asymmetric environment.

Scalability Aspects of Network Computing

In this section we delve upon the scalability aspects
of HPC systems from the network computing
perspective. There are two aspects of scalability to
be considered:

l Switch architecture scalability

l Protocol Scalability and fault tolerance

The first aspect of switch architecture scalability has

been considered in the previous section. Specifically,
the N2 connectivity problem is the first impediment
towards switch architecture scalability in an HPC
environment. Using modified Clos architecture and
creating a system of conjugated cross-connects is one
approach towards HPC scalability. Using multi-degree
backplanes is yet another approach towards achieving
switch architecture scalability. This has been
described in the previous section. Newer scalable
architectures involve the use of optical backplane
which have also been shown in the previous section.
An example of an optical backplane architecture is
described below: In Fig. 4.5 above, a 200 Gbps cross-
connect fabric is created using an optical backplane.
Each FPGA is part of a processing card, and it emits
10 Gbps data that is modulated onto an optical
transceiver (colored). The transceiver is further

Fig. 4.5: 200 Gbps cross-connect fabric

Networks for Computing Needs 383

multiple computing IO cards. The FPGA is responsible
for protocol support and scheduling data onto the
backplane. A control card is used to monitor and
maintain the health of the network.

Protocols for Network Computing

In this sub-section we will describe some of the
prevailing protocols used in network computing and
postulate a Roadmap to describe efficient protocols.
Classically the impact of a protocol on a network
fabric is quintessential towards making a network
efficient. There are many protocols that do similar
tasks, and it is important to choose the correct protocol.
Unlike large scale networks in the wide-area or even

Fig. 4.6: HPC Features - Network Specifics analysis matrix

connected to an optical channel multiplexer that
multiplexes in the frequency domain all the
wavelengths, one each from every transceiver in the
card. Theoutput of the transceiver is connected to a
passive coupler that facilitates adding data into the
optical bus. Another coupler is used for drop side
communication. The second coupler allows data to
be tapped on from any channel. In this way the optical
passive backplane facilitates communication between

in local areas, the HPC activity is largely within a
cluster or a closed environment, implying that
proprietary protocols are just as good as standard
backed protocols. A protocol is a method that is agreed
between two or more systems to achieve a common
set of communication goals. Usually, a protocol is
backed with some control mechanism that sets about
the protocol in motion.

Fig. 4.7: Data-center technologies and specifics

384 Ashwin Gumaste

Impact of Latency on HPC Environments

One of the critical aspects of HPC performance is
the end-to-end latency that is experienced amongst
HPC machines. Generally larger acluster, worst the
latency of the system. In fact, the latency increases
non-linearly with the HPC size. Latency is due to
protocol processing, queuing and lookups at
intermediate nodes and switches. The impact of
latency is that it adversely affects virtualization. Most
applications cannot be made to work efficiently in a
system that is impaired by latency. This is a cause of
concern in modern HPC environments. Usually the
delay incurred in processing a task is the combination
of computational latency and communication latency.
Computational latency can be reduced by efficient
coding practises as well as parallelizing tasks.
Communication latency can be reduced by appropriate
choice of protocols and faster interconnect methods.
To a large extent, communication latency depends on
protocol processing. The larger the protocol overhead
required to be processed, the higher the latency.

Hence, it makes sense to have more efficient protocols
that require minimal processing. To this end, one
approach is to keep data in the lower layers of the
Internet stack as the processing requirements here
are lower. To do so, the granularity of processing in
lower layers is much higher than the higher layers,
which is not always optimal. A trade-off needs to be
attained to process data so that latency is minimized
while achieving objectives of communication. Latency
also has an impact on virtualization. It is generally
preferred that latency be deterministically computed
in an HPC environment. It is very difficult to achieve
a virtualized computing environment if the latency is
probabilistic in nature. Many protocols that require
complex forward of information are probabilistic in
nature. Protocols such as Infiniband, Fiber Channel
and some versions of Ethernet are able to maintain
deterministic latency, while most other protocols such
as IP and MPLS in cloud environments or Ethernet
LANs (primitive Ethernet) are probabilistic in nature.

Fig. 4.8: An example of a virtualized infrastructure

Fig. 4.9: Typical Data-center implementation at MTNL using
Indigenous Routers designed by IIT Bombay (OE-
Switches and Routers)

