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Roles of Long non-coding RNAs in Cellular Stress Response
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Cellular systems are often exposed to variations in their environment and, as a consequence, the cell systems have evolved
a variety of pathways to promote cell survival during such challenges. Such “pro-survival” cellular pathways, often
referred to as cellular stress response pathways, involve intricate cellular signalling networks, some of which are evolutionarily
conserved. Given that such response mechanisms have caschatitsgosf the cellular physiology is not unexpected

that regulatory forms of long non-coding RNAs (IncRNAS) play critical roles in these processes as well. This short review
focuses on the regulatory roles of INcCRNAs in transcriptional control during cellular stress response in higher vertebrates.
Here, we elaborate on a few recent examples from the mammalian systems on the role of IncRNAs in the heat shock
response process.
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The mRNA-centric paradigm of the human basis of a convenient practical cut-off in RNA
transcriptome had undergone a fundamental changeurification protocols that excludes short RNAs
with the advent of new generation of DNA and RNA (Kapranov et al., 2007). While miRNAs are mainly
sequencing technologiadith the" rediscovery that involved in post-transcriptional gene regulation events,
the genome is pervasively transcribed (Kapragiov piRNAs protect the integrity of the genome from
al., 2002; Rinn et al, 2003), it is now evident that invasion by genomic parasites such as transposable
RNA does not simply act just as a messenger moleculeelements by silencing them. The long non-coding
but directly regulates almost all the cellular processesRNAs (LncRNAs), on the other hand, have crucial
(Lakhotia, 2017; Beckmanret al., 2016, Roundtree roles in the regulation of gene expression both in
et al., 2017). Moreoverit is widely acknowledged development and dérentiation. Intriguingly the
now that the organismal complexity correlates to the number of INcRNAs in a species shows a positive
non-coding content of the genome and not to its codingcorrelation with genome complexitindicating the
portion (Huttenhofer et al., 200&%unget al., 2013; RNA-based control in the evolution of multicellular
Brosius, 2014Lakhotia, 2017), thus signifying the non- organisms (Fatica and Bozzoni, 2014). The IncRNAs
coding component of the genome. The domain of non-are greater than 200 nucleotides in length; these are
coding RNA (ncRNA) biology was revolutionized with  often poly-adenylated and are devoid of an open
the sequencing of the human genome, which identifiedreading frame (ORF) (Derrien et.a012). Further
that the human genome encodes thousands ofhey have the dual ability to function as a ligand for
regulatory non-coding RNA, both small (<200 bp) and proteins involved in gene regulation processes as well
long (>200 bp) forms. The small regulatory ncRNAs as to mediate base pairing interactions which guide
consists of the microRNAs (miRNA) and the Piwi- IncCRNA containing complexes to specific RNA or
interacting RNAs (piRNA), whereas those greater DNA tamet sites Another remarkable virtue of
than 200bp are termed long non-coding RNA on thelncRNAs is their unique ability to fold into complex
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secondary and higher order structures that providesAkerfeltetal., 2010. Under physiological conditions,
higher accessibility to both proteins and target the HSF1 protein is rendered inactive through an
recognition sites (Batista and Chang, 2013; Guttmaninteraction with HSPs @&llmy, 2004). Upon heat
and Rinn, 2012; Rinn and Chang, 2012). The flexible shock, the HSF1 monomers are released from the
(Zappulla and Cech, 2004) and modulas&jEt al., complex, and they trimerize and translocate to the
2010;Wutz et al., 2002) nature of IncRNAs enable nucleus to bind to sequence motifs termed as heat
them to tether proteins togethevhich otherwise  shock elements (HSEs) in the promoter regions of
would not have been able to interact. Thus INcRNAs genes upregulated in response to heat shock (Kugel
regulate both transcriptional and post-transcriptional and Goodrich, 2006). Most often, such genes code
events. Such regulation is observed both in normalfor the HSPs. Intriguinglyin mammalian cells, the
physiological conditions as well as during cellular heat shock is known to induce the activation of HSF1
stress responsEhis short reviewas the title suggests, by forming a complex with a IncRNA and the
would mainly focus on some of the recent discoveriestranslation elongation factor eEF1A (Shamoveky
on the role of INcRNAs in cellular stress response inal., 2006). The IncRNA, namedSR1 (for Heat
species that show homeostasis, such as mammals.Shock RNA 1), is polyadenylated, constitutively
_ _ expressed, and its expression level is altered during

The cellular system is constantly _subjected 0 the heat shock (Shamovsky al., 2006). The
stres_s in response to a variety of conditions such as ?)resence oHSR1 is essential for the cells to mount
transient exposure to hotc_)rcold te_mp«_sratures, hea%ffective heat shock response. Since the translation
metals, exogenous chemicals, oxldatlve stress, Saltelongation factor eEE1A is involved in titSR1-
and pH shifts among others (Morimoto, 1988|da mediated activation of HSF1 during a heat shock, it
et al., 2010). The cellular systems have eyolved could be argued that the heat shock-induced translation
remarkable combat processes _to cope up with Suc'&rrest may well be regulated by th&RL (Kugel
transient stregsors by mount!ﬁgellular stre;s and Goodrich, 2006). More recent studies suggest that
responsef‘s wh!ch_are essentially pro-survival the HSR1 sequences are evolutionarily conserved
mechanismdg\ctivation of the stress responses results (Choi et al., 2015, and that the mammalian

ina _reorganization of cellular physiology to support counterpart of thelSR1 could have a bacterial origin,
survival (Fuldatal., 2010). Such a response generally possibly via the horizontal gene transfer or through

involves repression of the basal physiological an infection proces&(m etal., 2010 Lakhotia, 2012;
processes of the cell, including the transcription, ~p i a1 2015 ' ' ’

translation and splicing processes, and diversion of

the energy saved to initiate the stress responserhe Alu and B2 SINE IncRNAS

pathways. For example, during a heat shock exposure,

the general transcription and translation processes inf e short interspersed elements (SINEs) represent a
the cell are repressed but there is an enhancedyPe Of abundant repetitive sequences actively
synthesis of the heat shock family of proteins, called transcribed by the RNA polymerase IlI in the
heat shock proteins (HSPs), to prevent misfolding of Mammalian genomeBprodulinaet al., 1999). The
proteins during the stress (Morimoto, 1998; Panniers,feésulting ncRNAs, spanning about 200 bases, are
1994). Intriguingly INcRNAs are known to regulate Known to have a 5’ end sequence similar to tRNA-
heat shock response pathways at multiple levels. Inlike sequencelfaniels and Deininge985;Wilusz

this review we would cover the recent discoveries € al., 2008. Intriguingly, the SINE elements show
on four such INcRNAs, namely tHéSR1 (Heat species-specific repeat motifs, thoughthe SIpHES
Shock RNAL),NEAT1 (nuclear paraspeckle assembly S€ are retrotransposons (Kazazian, 2004). For

transcript 1) Alu RNA and the Satellite 11l RNA. example, in mouse, the SINEs code for two distinct
types of ncRNAs the B1 andB2 class while in
The Heat Shock RNA 1 (HSR1) IncRNA humans SINE code for only one type that is the

AluncRNA (Kassubeet al., 2013). Exposure to a
Heat Shock Factor 1 (HSF1) — a highly conservedheat shock is known to increase the expression levels
transcription factor- is the master regulator of the of Alu transcripts in human and tB transcripts in
heat shock response pathwayofimoto, 1998;  mouse (Liuetal., 1995; Kimet al., 2001; Fornacet
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al., 1989). Other stressors, such as infection and UVinduced at several other chromosomal loci, and their
exposure are also shown to have similar effectsexpression could be dependent upon the extent or the
suggesting their possible role in the cellular stresstype of stressors (Sengupiaal., 2009;Eymery et
responseWalterset al., 2009. Subsequent studies al., 201Q. Besides HSF1, the nSB were found to
have shown that, during heat shock, B2eandAlu recruit CREB binding protein (CBP), RNA
transcripts bind directly to RNA Pol Il to block the polymerase Il, splicing factors/RNA binding proteins
formation of transcription initiation complexes. The (SF2/ASF or SRSF1) and several heterogeneous
RNA binds to the catalytic cleft of RNA Pol Il and is nuclear ribonucleoproteins (hnRNPs) (Chieidl .,
recruited into complexes with the polymerase which 2004; Denegriet al., 2001; Jollyet al., 2004;

are assembled at the promoters, thereby keeping th&Veighardtet al., 1999). Recent studies have also
polymerase from properly engaging with the DNA shown that except for the HSF1, the other known
(Allen et al., 2004 Marineret al., 2008 resulting in components of the nSBs require the presen&at8f

the heat-induced transcription repression. Further transcript for the association with the nSBs, suggesting
presence of HSF1 binding sites in tdel enriched  a scaffold-like function for th&at3 transcripts in the
regions of the heat shock responsive genes suggesfermation of nSBsNletzet al., 2004 Goenkaet al.,
HSF1 mediated regulation of these transcripts during2016).

heat shock (Pandeyal., 2011). Alut ipts h , .
eat shock (Pandey )-Alutranscripts have A number of possible functions have been

also been implicated in other cellular processes ibed 10 theat3 ints in h hock
regulating gene expression, such as alternative®Scrioed to th&atstranscripts in heat shock response

splicing, RNA editing, translation, and miRNA (Jolly and Lakhotia, 2006 These include chromatin
express}on and functi’orChen anq\’(ang 2017 remodeling, alternative splicing and transcriptional

suggestingB2/Alu transcripts may regulate gene regulation (Jolhet al., 2004;Jolly and Lakhotia 2006
expression at multiple steps. Biamonti andVourc’h, 2010 Zonget al., 201;

Morimoto and Boerkoel, 2013; Kawaguchi and Hirose,
The Satdlite 111 IncRNAs 2015 Goenkeet al., 2016). One of the recent studies
o _ _ ~ has shown that the Sat3 transcripts could mediate
the formation of nuclear stress granules inhuman cellsg) 2016). The study demonstrates t/Sat3
Exposure of human fibroblasts to heat shock resultsyanscripts sequester transcriptional factors, such as
in the recruitment of HSF1 to discrete foci in the CBP on the nSBs thus making them unavailable for
nucleus, which are referred to as the nuclear stresgpe transcriptional activitirhe splicing factor SRSF1

bodies (nSBs)Jplly etal., 1997). Subsequent studies  appears to be the critical protein that helps CBP to be
have shown that the recruitment of HSF1 into the sequestered on ti®at3 positive nSBs. Intriguingly

nSBs is to induces the expression of a INCRNA, Ca"edectopic overexpression dat3 repeat-bearing
the Satellite 1l transcriptsSat3). These transcripts,  transcripts mimicked heat shock response in human
ranging in length from 2 to 6 kb are detected only cg|is even when not exposed to a heat shock. The
when the cells are exposed to stress such as hegjyerexpresse@at3 formed nSBs, recruited SRSF1
shock and are induced by HSF1 (Metal., 2004;  and CBP onto the nSBs, and reduced the expression
Rizzi et al., 2004; Senguptet al., 2009). TheSat3 evels of genes that are normally down regulated during
transcripts are characterized by the presence of 3ne neat shock exposure, suggesting thatSta
consensus GGARrepeat motif, and such repeat transcript is a key player in the heat shock-induced
tracts in the DNA are often associated with the yranscriptional suppression of a few of the genes in
pericentromeric regions of the human chromosomesihe human cells (Goenksal., 2016). The mechanism
(Jollyetal., 2002 Valgardsdottietal., 2005). fudies  proposed for theat3 transcripts during the heat shock
have shown that the heat shock-induc®d3  response is very similar to the observations made for
transcripts accumulate at the site of their synthesis tape hsr omega IncRNAs idrosophila, a proposed
form the nSBs (Metet al., 2004; Rizzetal., 2004).  fynctional homologue ofat3 in flies (Jolly and
While the 9g12 locus appears to be the primary locus| akhotia, 2006; Mallik and Lakhotia, 2009; Mallik and

for the Sat3-positive nSBs (Metet al., 2004; Rizzi | aihotia, 2010), suggesting a parallel evolution for
et al., 2004), studies did indicate thgat3 could be  these two transcripts in diverse species such as
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humans and flies. Given that these IncRNAs of HSF1 in the heat shock response, the HIF2
negatively regulate gene expression, and that loss ofegulates the expression of a number of genes during
hsr omega ameliorates Huntington disease phenotype@ hypoxic condition both to improve oxygen delivery
in a Drosophila model, the possible roles &ht3 and to reduce oxygen demand — a specific stress
transcripts in the etiology of neurodegenerative response mechanisilgmundaret al., 201Q. The
disorders needs to be thoroughly investigated. HIF2-induced\EAT1 expression results in increased
Emerging evidence suggests that inclusions formednumber of paraspeckles in the cells during a hypoxia
in degenerating neurons sequester transcription(Choudhryetal., 2015. Though the specific cellular
factors, and thus may bring about transcriptional functions of paraspeckles are not fully understood,
dysregulation in the neuron. For example, TAR emerging reports suggest that paraspeckles might
DNA-binding protein of 43 kDa (TDP-43) was shown regulate transcriptional and post-transcriptional
to recruit RNA polymerase and other transcription processesHataet al., 2008;Torreset al., 2017%.
factors in neurons of patients with amyotrophic lateral The increase®NEAT1 expression is associated with
sclerosis (ALS) contributing to transcriptional enhanced cell survival and proliferation and conversely
dysregulation (gmashitaet al., 2014).A similar breast cancer patients with increassBAT1
mechanism could operate for tBat3 transcripts,  expression show poor survivalifoudhryetal., 2015,
wherein the sequestration of CBP to the nSBs issuggesting a pro-cell survival function for tREAT1
responsible for the transcriptional repression of genesmediated paraspeckleSt{oudhry and Mole, 2016).
during the oxidative stress and in the transcription Moreover silencingNEAT1 in mice sensitized
dysregulation observed in neurodegeneration (Goenkgreneoplastic cells to DNA-damage-induced cell
et al., 2016). Our ongoing investigations in the death and impaired skin tumorigenesis (Adriagns
laboratory indicate that th8at3 transcripts are  al., 2016).

induced in the neurons exposed to oxidative stress ) _ _

and that these transcripts are expressed in theXress-induced IncRNAs: A Field on the Horizon

dggenerating neurons of pa‘_tients wilzheimers With the advent of functional high-throughput
disease (A.D) or Parklnso_n disease (PD) (Goenka screening and sequencing systems, several novel
al., unpublished observations). Thus, the prolonged|n.pNAs have recently been found and a few more
expression ofat3 due to the chronic physiological 136 peen shown to be involved in the cellular stress
stress experienced by the neurons might mimic Chron'cresponse pathways. One such novel example is the
heat stress and might contribute to neurodegeneratiorb53_regu|ated INcRNA name@RINGS (Tp53-
Thus, itis tempting to speculate that SUpPression ofyq o jated inhibitor of necrosis under glucose
Sat3 might delay the neurodegenerative process iNgianation) which is found to protect tumor cells from
AD and PD, analogous to the observations that Wer€.g| death as opposed to the classical function of p53

made for the hsr omega transcript inDresophila 4 5reyent malignant transformation. Upon glucose
model of HD (Mallik and Lakhotia, 2009; Mallikand  g451ationTRINGSINCRNA is upregulated in human
Lakhotia, 2010). tumor cells and inhibits th8TRAP-GSK3-NF-«B
The Nuclear Paraspeckle Assembly Transcript 1 necrotic signaling to protect tumor cells from cell death
(NEAT1) IncRNA (Khan et_al., 2017).Anqther IncRNATERRA
(TElomeric Repeat containing RNA) is found to be
TheNEAT1 IncRNAIis an essential structural element involved in the protection of telomere DNA during
of the nuclear body paraspeckle and was originally stressTERRA is upregulated during heat stress upon
shown to be transcribed from the chromosomal locusbinding of HSF1 to the subtelomeric DNA. Notably
associated with the familial endocrine neoplasia (Guruthe knockdown of HSF1 impairs telomere integrity
etal., 1997). IntriguinghNEAT1 IncRNAis induced  and enhances the telomeric DNA changeE=RA
in response to hypoxia conditiorSHoudhryet al., does not get activated during heat stress in HSF1
2019. Sudies have shown that tNEAT1 expression  deficient cells (Koskaeat al., 2017). Similarlya few
is regulated by the hypoxia-inducible factdiF-2c more hypoxia-induced IncRNAs have been discovered
transcription factor activated by the hypoxic condition in cancer since hypoxic regions are common in solid
(Choudhryet al., 2015. Analogous to the functions tumors. Some of these examples incINEAT1 (up-
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regulated in breast cancdf)19 (up-regulated in p53  to be involved in these processes. Given that such
null mouse) andJCAL (upregulated in bladder response mechanisms have cascading effects, the
cancer), and all of them are regulated by hypoxiancRNAs appear to have been selected for a diverse
(Changet al., 2016). Intriguing, cellular senescence, set of functions (Lakhotia, 2012)Nith the

a complex cellular process experience multiple “rediscovery” that the “junk DNA” do have functional
adverse stimuli such as replicative stress, DNA roles, and that “junk DNA” do get transcribed to form
damage, oxidative stress or oncogene, is known tonon-coding transcripts with critical regulatory roles
associate with the expression of a few IncRNAs. For (reviewed in Lakhotia, 2017), the coming decade is
example ANRIL IncRNA which is decreased during expected to uncover hitherto unknown functions for
replicative senescence leading to transcriptionIncRNAs in the normal and in the abnormal cellular
repression of the CDKN2A/CDKN2B gene locus physiology

involved in the regulation of the cell cycle
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