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Introduction

Liénard equations are widely used in many branches
of science and engineering to model various types of
phenomena like oscillations in mechanical and
electrical systems. Particularly, for more than fifty
years, there has been a continued interest among
different authors for paying attention on Liénard type
differential equation (Harko et al., 2013; Monsia et
al., 2016):
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d x dx
f x xg x

dt dt
      (1)

where f(x) and g(x) are functions of x. Further using
suitable choice of f(x) and g(x), one can show that it
admits position-dependant mass dynamics and hence
will be useful for several applications of quantum
physics such as finite gap system (Bravo and
Plyushchay, 2016), heterojunctions (Morrow and
Brownstein, 1984; Morrow 1987), soliton (Ganguly
and Das, 2014), construction of coherent states (Ruby
and Senthilvelan, 2010), string physics (Susskind and

Uglum, 1996), flux background (Gukov et al., 2004),
etc. These types of second order differential equation
are interesting for physicists provided one generates
suitable Hamiltonian. For all possible values of f(x)
and g(x), it may not be possible to generate
Hamiltonian having stable eigenvalues. Secondly a
classical model solution can also be obtained using
He’s approximation (He, 2008a; 2008b; Geng and Cai,
2008; Rath, 2011) by using procedure given below
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( ) ( ) ( )

d x dx
f x xg x R t

dt dt
      (2)

Let us consider now two different values of x
as

1 1
cosx A t (3)

and

2 2
cosx A t (4)

then

Published Online on 06 September 2017



936 Biswanath Rath et al.

2 2

2 2 2 1 1 2

2

2 1

(0) (0)

(0) (0)

R R

R R

 
 


 

 (5)

where
1

1  . In this paper, we address the above

differential equationby selecting a general type of
values on f(x) and g(x), and generate suitable
Hamiltonian and study its stable eigenvalues.

General type of Differential Equation and Solution

Here we consider a general type of differential
equation as

   
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        (6)

where N, K = 2, 4, 6, ... . In this equation one has to
fix the value of K and vary N or vice versa. Let us
consider the general solution of this differential
equation as

cosx A t (7)

where
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


 (8)

Hamiltonian Generation

In order to generate Hamiltonians we multiply the
differential equation by x and rewrite it as

2 2

0(1 )

2
0

N Kx x x
d

dt

   
   



(9)

Let the bracket term be denoted as H where

2 2

0

1
(1 )

2
N KH x x x      (10)

Now define momentum, p as

H
p

x





(11)

Hence one can write the Hamiltonian, H as

2
2

0

1

2 (1 )
K

N

p
H x

x



 

   
(12)

Comparing the above Hamiltonian (Eq. (12))

with
22
0

2 2

Kxp
H

m


  , One will find that the mass, m

is a function of x i.e., ( ) 1 Nm x x  . Further, we find

an extensive study on the position dependence of mass
pertaining to various aspects have been carried out
by several authors (von Roos, 1983; Quesne and
Tkachuk, 2004; Koç and Tütüncüler, 2003; Dutra et
al., 2003; Bagchi et al., 2006; Ganguly et al., 2006;
Ganguly and Nieto, 2007; Lévai and Özer, 2010;
Killingbeck, 2011; Mazharimousavi, 2012; Yahiaoui and
Bentaiba, 2012; Mustafa, 2015; Rajbongshi and Singh,
2015). In the present case, we study the discrete
nature of spectra and its stability for the newly
generated Hamiltonian (Eqn. (12)) with different
values of K and N.

Eigenvalues of Generated Hamiltonian

Here we solve the eigenvalue equation

H E  (13a)

using matrix diagonalization method (Rathet al., 2014;

Rath, 2015), in which   is expressed as

m

m

A m  (13b)

Here m  satisfy the exact eigenvalue equation

   2 2

0
2 1H m p x m m m    (14)

Now using the above formalism, we get the
following recursion relation satisfied by Am as

2,4,6,.....

0k k

m m k m m m m k

k

P A S A R A 



   (15)

where

k

m
P m H m k  (16a)

k

m
R m H m k  (16b)
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m
S m H m E  (16c)

In fact one will notice that the above Hamiltonian
is not invariant under exchange of momentum p and

1

(1 )Nx . Hence following the literature (Rath 2008)

Table 1: First four eigenvalues of Hamiltonians with 0 = 1,  = 1

Hamiltonian Value of n Eigenvalue

2

2

1 1

2 (1 )
H p p x

x

 
   

0 0.355 026 280

1 1.226 397 537
2 1.846 999 994
3 2.445 481 398

2

4

1 1

2 (1 )
H p p x

x

 
   

0 0.338 179 394

1 1.199 312 190
2 1.770 479 342
3 2.154 962 590

4

2

1 1

2 (1 )
H p p x

x

 
   

0 0.342 163 615

1 1.447 762 223
2 2.733 381 643
3 3.824 351 590

4

4

1 1

2 (1 )
H p p x

x

 
   

0 0.326 786 311

1 1.447 762 223
2 2.733 381 643
3 3.824 351 590

6

2

1 1

2 (1 )
H p p x

x

 
    0 0.354 476 360

1 1.652 542 050
2 3.294 555 429
3 5.270 061 821

6

4

1 1

2 (1 )
H p p x

x

 
   

0 0.341 508 635

1 1.617 435 142
2 3.393 428 656
3 5.181 678 146

we write the invariant Hamiltonian as

2

0

1 1

2 (1 )
K

N
H p p x

x



 

   
(17)

and reflect the first four states eigenvalues in Table
1.
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Phase portrait in the (p, x) plane

Classical phase trajectories of the system (Eqn. (12))
(for N = K = 2 and N = 4, K = 2) are represented in
the Figs. 1 and 2 for different parametric choices.

2

n
 of first four eigenstates of Hamiltonian given in

eqn. (17) with N = K = 2 and N = 4, K = 2 are shown
in Figs. 5 and 6 respectively. We have also seen the
similar nature in other Hamiltonians. Here we notice
that the nature of phase portraits and corresponding
probability are closed orbits thereby justifying the
stability of Hamiltonians from both classical and
quantum mechanical point of view. At this point, we
would like to state that the nature of phase portrait
and corresponding probability justify the discrete
nature of real spectra and its stability. It is worth
mentioning here that the bra state may diverge and
its corresponding ket state may converge while the
bracket remains the invariant when one study under

Fig. 1: Classical phase trajectories of the Hamiltonian
system (12) with 0 =  = 1, N = K = 2, for various
values of A

Fig. 2: Classical phase trajectories of the Hamiltonian
system (12) with 0 =  = 1, N = 4, K = 2, for various
values of A

Plots reflected in these figures indicate the closed
elliptical orbit which clearly justifies the stable
behaviour of the system. Similar behaviour has also
been reflected for the Hamiltonian with different
values of N and K. The quantum mechanical phase
trajectories of the system (Eqn. (12)) for N = K = 2
and N = 4, K = 2 are also represented in the Figs. 3 to
4 for different eigenvalues. The representative plot

Fig. 3: Phase trajectories of the Hamiltonian system (12)
with 0 =  = 1, N = K = 2, for various values of E = H

Fig. 4: Phase trajectories of the Hamiltonian system (12)
with 0 =  = 1, N = 4, K = 2, for various values of E = H
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co-ordinate and momentum transformation in complex
space (Rath and Mallick, 2016). Classical portrait
defined that there exists kinks in the orbit. In order to
justify the nature of kinks we plot the probability which
is more suitable representation.

Conclusion

In this paper, we formulate a general type of Liénard
differential equation which can be regarded as position
dependent mass quantum system. We present
analytical solution on its classical motion. Classically
we also studied the phase portrait for different
amplitude of motion and noticed that classically the
Hamiltonians are stable. In order to present a complete

picture, we calculate eigenstates numerically as the
said the equation cannot be solved analytically. The
quantum phase portrait has been studied considering

E=H. Further, we plot
2

n
  of first four eigenstates

and notice that
2

n
  goes to zero as x goes to infinite.

This implies that the suggested quantum systems are
stable and can yield discrete eigenvalues irrespective
of quantum system. We hope to study further on
spectral variance under co-ordinate and momentum
transformation in complex space (Rath and Mallick,
2016) without changing the nature of probability (Rath,
2017) in a given quantum system.

Fig. 5: Wavefunction for the Hamiltonian system (12) with
0 =  = 1, N = K = 2, for (a) n=0, (b) n=1, (c) n=2 and (d)
n=3

Fig. 6: Wavefunction for the Hamiltonian system (12) with
0 =  = 1, N =4, K =2, for (a) n=0, (b) n=1, (c) n=2 and
(d) n=3
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