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This paper is a tutorial presentation of spatial growth of a transverse instability, associated with the propagation of an
electromagnetic beam, with uniform or Gaussian irradiance along the wavefront. There are two approaches to the study of
filamentation in a plasma. The results of the two approaches have been expressed in a form where they can be compared.
It has been noted that the growth of the instability in the first approach is equivalent to the self-focusing of a ripple in the
second approach. The dependence of the maximum growth rate and the corresponding optimum value of the wave number
of the instability on the irradiance of the main beam has also been studied. Further a paraxial like approach has also been
adopted to analyze the characteristics of propagation of aripple, when the dielectric function is determined by the
composite (Gaussian and ripple) electric field profile of the beam. The effect of different parameters on the critical curves
has been highlighted and the variation of the beam width parameter with the distance of propagation has been obtained for
three typical cases viz of steady divergence, oscillatory divergence and self-focusing of the ripple.
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Introduction

There has been considerable interest in the plasma
instability, associated with the propagation of a high
power electromagnetic beam. A nonlinear medium is
susceptible to filamentation instability, which is
characterized by growing electron density and
irradiance fluctuations, transverse to the direction of
propagation of the beam. There are two
complementary approaches to the study of the
filamentation instability in a plasma, as discussed by
Sodha and Sharma, 2007.

 In the first usual approach (Askaryan,1962;
Talanov, 1966; Hora, 1967; Palmer, 1971; Kaw et al.,
1973; Max et al., 1974; Drake et al., 1974;
Mannheimer and Ott, 1974; Perkins and Valeo, 1974;
Yu et al., 1974; Chen, 1974; Sodha et al., 1976a; Sodha
et al., 1976b; Bingham and Lashmore, 1976; Sodha
and Tripathi, 1977; Sodha and Sharma, 2007; Gurevich,
1978; Perkins and Goldman, 1981; Kruer et al., 1985;
Epperlein, 1990; Berger et al., 1993; Ghanshyam and
Tripathi, 1993; Wilks et al., 1994; Kaiser et al., 1994;

Vidal and Johnston, 1996; Lal et al., 1997; Guzdar et
al., 1998; Bendib et al., 2006; Keskinen and Basu,
2003; Gondarenko et al., 2005), one considers an

instability 1 expE ik x ik z   , superposed on a high

power beam  0 expE i t kz   ; the suffixes   and

 refer to the components of the wave number k of
the instability parallel and perpendicular to the direction
of propagation viz., z  axis. The instability grows or
not, as the beam propagates, depending on whether
k|| is imaginary or real. When k|| is imaginary, the

instability grows with a spatial growth rate ik . Apart

from the scientific point of view, the results in the
field of filamentation instability are relevant to
ionospheric modification experiments (George, 1970;
Utlaut and Cohen, 1971; Guzdar et al., 1998; Keskinen
and Basu, 2003; Gondarenko et al., 2005; Perkins
and Goldman, 1981; Gurevich, 1978; Brown, 1973),
beams from proposed satellite power stations
(Gurevich, 1978) passing through the ionosphere and
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the field of laser-induced fusion (Kasperczuk et al.,
2006; Chen and Wilks, 2005; Badziak et al., 2005;
Hora et al., 2005; Hora, 2005).

Another approach for the investigation of this
instability is based on the indirect (Loy and Shen,
1969)and direct (Chiligaryan, 1968; Abbi and Mahr,
1971)evidence that filamentation in a nonlinear
medium is caused by the presence of irradiance spikes
in the beam, normal to the direction of propagation.
Following this lead, the growth of a Gaussian ripple
on a plane uniform beam in plasma has been
investigated (Sodha et al., 1979a; Sodha et al., 2006;
Sodha et Al., 2007; Sharma et al., 2004) to a significant
extent; this approach is based on the paraxial theory
of self focusing of electromagnetic beams as
formulated by Akhmanov et al., 1968 and developed
by Sodha et al., 1976 (a,b) and his associates (Sodha
et al., 1979b; Sodha et al., 1981; Sodha et al., 1992;
Sodha et al., 2004; Asthana et al., 1999; Pandey and
Tripathi, 1990). The growth of a ring ripple on a
Gaussian beam has also been investigatedin a
paraxial-like approximation (Sodha et al., 2009; Misra
and Mishra, 2008; Misra and Mishra, 2009).

Media with self-focusing nonlinearity are known
to be susceptible to filamentation instability; hence, a
ring perturbation over a Gaussian beam may also grow
to a large level in the course of propagation. This is
due to the fact that the ring region, with higher intensity,
would have higher index of refraction and would
attract energy from the neighborhood and grow. Many
researchers (Leemans et al., 1992; Chessa et al.,
1999; Liu and V K Tripathi, 2000) have reported ring
formation when nonlinear refraction causes self
focusing.

Several authors have applied the conditions,
derived for the first case to the second case, possibly
because the first case is more well known and easier
to analyze. In both approaches, one looks for the
conditions and dynamics of growth of the maximum
irradiance as the beam propagates. The condition for
the growth of the maximum irradiance of the
perturbation in the first approach corresponds to the
condition for onset of self-focusing in the other
approach. This is also expected intuitively because
the change in the irradiance (which determines the
magnitude of the nonlinearity) and the width of the
beam (which determines the magnitude of diffraction)

are the main parameters affecting the instability/self-
focusing of the perturbation. However, there is an
important difference in the results of the two
approaches. In thefirst approach, the condition for
the onset of the instability is independent of the
irradiance of the perturbation and depends on the
irradiance of the main beam, while in the second
approach, the condition depends on the irradiance of
the main beam as well asthe perturbation (ripple) and
the phase difference between the two.

In this paper expressions for the growth rate of
instability and the condition for instability to occur have
been obtained and the maximum value of the growth
rate and the corresponding value of q have been
specifically investigated. Following the other approach
a critical curve between the initial radius and power
of the spike was obtained, such that for all points on
the curve the ripple propagates without change of
width and for points above the curve the ripple width
varied between the initial width and a minimum (in
other words it displayed self-focusing). For points
below the curve, the ripple has either steady
divergence or oscillatory divergence (the beam width
varying between the original width and a maximum).
The variation of the ripple width with distance of
propagation for typical points in the three regions has
also been evaluated and illustrated graphically for
different kinds of nonlinearities (collisional (Sodha et
al., 1976a), ponderomotive (Hora, 1970) and relativistic
(Esarey et al., 1997)) in laser-plasma interaction. It
is seen that the propagation characteristics of the
ripple strongly depend on the initial ripple width and
initial power of the beam (including the ripple), which
can be expressed as a function of the amplitude ratio
of the ripple and the main beam and the phase
difference between the two.

Several later references with similar logic and
directly or indirectly concerned with instability have
been published (Hao et al., 2013; Yang et al., 2016;
Bawaaneh et al., 2010; Lin et al., 2014; Hasanbeigi
et al., 2013; Fox et al., 2013; Sharma et al., 2016;
Silantyev et al., 2017; Pathak et al., 2015; Grassi et
al., 2017; Alimohamadi and Hajisharifi, 2017). Despite
different approaches, the status of our understanding
of instabilities has not changed appreciably over the
years. The theory is far ahead of available
experiments.
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Analysis for Beams with Uniform Illumination
Along the Wave Front

Expression for Spatial Growth Rate of Instability
(First Approach)

Let the electric field of a beam of uniform illumination
and that of a small perturbation (filament)
superimposed on the beam be represented by JE0
expi(t – kz) and JE1 expi(t – kz) respectively.
The total field E propagating in the Z direction through
a plasma can be expressed as

E = J(E0 + E1) expi(t – kz) (1)

where E0, without loss of generality, is a real positive
constant and E1 (|E1| << E0) is a complex parameter,
J is a unit vector along y axis, k is the wave number
defined later and w is the wave frequency. Neglecting

the small contribution 1 1
*E E  as compared to other

terms, one can write

 *
0 0 1 1
2 *E E E E   E E (2)

The effective dielectric function of the plasma
depends on EE* and hence can be expressed as

       * 2 2
0 0 2 0 0 1 1

*EE E E E E E     (3)

where

 2 *
2
0

*EE E
E E




  
  

The effective electric field vector E satisfies
the wave equation,

2 2 2( ) ( ) ( , ) 0c r z     E E E (4)

Where  is the effective dielectric function of
the plasma and C is the speed of light in free space.

In the JWKB approximation . .i e k–22 (ln )
<< 1, the second term of Eq.(3) may be neglected,
where k is the wave number of propagation. One
can thus write the wave equation, as

2E + (2/c2) (r, z) E = 0 (5)

The wave equation for the total field can be

separated for E0 and E1. On choosing 0k
c

 

the wave equation for E0 yields a solution

E0 =  A0 (constant)

The wave equation for E1 (r, z) on neglecting

the term
2

1
2
E

z




 (assuming  E1 (r, z) to be a slowly

varying function of z) and *
1 1E E , reduces to

 
2

2 2 *1
1 1 0 1 12 22

E k
ik iE E E E E

z z c

 
     
 

(6)

One can express the complex amplitude E1 of
the perturbation as

E1 = E1r + iE1i, (7)

where E1r and  E1i are real and
2

2

12

r rr
   


.

However in most of analyses E1r and  E1i which are
real have been assumed to be proportional to the

complex quantity   exp i q x q z   which is not

consistent. However the results so obtained are the
same as the ones based on the following
considerations, free of any objection. Assuming E1 to
be independent of y and proportional to

 cos iq x iq z   , one has 2 2
1 1E q E    . With this

assumption and using Eq. (5), one obtains two
homogeneous equations in E1r and  E1i (after equating
the real and imaginary parts). Thus

21
12 0i

r

E
k E

z


 


 (8a)

and

21
12 0r
i

E
k E

z
q


 

 (8b)



926 M S Sodha and M Faisal

where
2

2 2 2
2 02

2
A q

c

    .

Differentiating Eqs. (8a) and (8b) with respect

to z and substituting for 1rE

z


 and 1iE

z


  from Eqs.(8b)

and (8a) respectively one gets

2 22
1

12 24

i
i

qE
E

z k





(9A)

and

2 22
1

12 2
.

4

r
r

qE
E

z k





(9B)

Hence E1 grows exponentially with z, with a
growth rate

1 22
2 2

2 02
2

2 2

q q
iq A q

k k c

  


       
  

 .    (10)

From the above equation one obtains the
condition for the growth of the instability ( being
real) as the beam propagates viz.

2
2 2

2 02
2

A q
c

   . (11)

Growth of a Gaussian Ring Ripple on a Uniform
Plane Wave Front (Second Approach), Following
Sharma et al. (2004)

Consider the propagation of a linearly polarized
electromagnetic beam with uniform intensity along
its wave front on which a Gaussian ripple is
superposed. Let the electric fields of the two
components be expressed, respectively, as

 0 0 expE i tE j (12A)

and

 1 1 exp pE i t - E j (12B)

Where E0 and E1 are the amplitudes, w is the
common angular frequency, and fp is the phase
difference between the main beam and the ripple.
The symmetry of the ripple allows the choice of a
cylindrical system of coordinates with the z axis
perpendicular to the wave front and passing through
the point of intensity maximum of the ripple. In the
present case, one considers the perturbation to be a
Gaussian ripple at z = 0; hence,

2
2

1 1 10 2
10

exp ,
r

E
r

  
    

E E (13)

where E10 is the field intensity of the ripple at z = 0
and r = 0 and r10 is the initial (z = 0) width of the
ripple. The propagation of the resultant electric vector
E = E0 + E1 is governed by the scalar wave equation
(5).

Assuming the ripple to be a small perturbation
( 10 0E E  ), one expects Eq. (5) to hold for both  E0
and E1 separately. As discussed in the analysis,
corresponding to the first approach E0 is constant.
For the study of self focusing of the ripple it is
convenient to express the dielectric constant as

     0 1, ,r z z + r,z   (14)

where  0 z  refers to the dielectric function of the

plasma at points of maximum irradiance  and  1 ,r z
represents the r dependent remainder.

Following Akhmanov et al. [1968] and Sodha
et al. [1976b] the solution of Eq.(5) for E1 may be
written in the cylindrical coordinate system as

   1 10 , exp ,A r z -ik z + S   E (15)

where

   z z
2

2r
S    (16)

is the eikonal associated with the electromagnetic
ripple beam and (z) is the inverse of the radius of
curvature of the wavefront.

Substituting for E1 from Eq. (15) in Eq. (5) and
equating the real and imaginary parts on both sides of
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the resulting equation, one obtains

 
 

2
1

2
0 10

,2 1
2

z z

r zS k S S

k r z k E




          

2
10 101
2

E E

r r r

  
    (17)

and

2 2 22
210 10 10

10

1
. 0

z2

A A AS S S k
A

z r r r r r k

                 (18)

Substituting for S from Eq. (16 ) in Eq. (17)
one obtains for an initially Gaussian ripple (Sodha et
al., 1976b)

2 2
2 10

10 1 1 2 2 2
10

exp ,
E r

A
f r f

  
    

= E E (19)

where f is a function of z and is defined by

1
.

df

f dz
 

Using Eqs. (12A), (15) and (19), one can write
the resultant irradiance as

     2
0 1 0 1 0 0 1 1.

      EE E E E E E E E E

10 10

22 2
2 0 10 10
0 2 2 22

2
cos ,p 2 2

E E E-r -r
E  exp exp

f r f f r f


    
          

(20)

which in the paraxial approximation can be expressed
as

   2
1 2 ,F z r F z  EE (21)

where

 
2

2 0 10 10
1 0 22 cos p

E E E
F z E

f f
   (21A)

and

 
10 10

2
0 10 10

2 2 3 2 4cos p

E E E
F z

r f r f
  (21B)

The dependence of nonlinear dielectric constant
on the intensity of the beam may be expressed as

 0 + EE   

where  
2

0 2 in a plasma1 p

 

    

From Eqs.(20) and (21) one can write

 
 

 
1

2
0 1 2.

EE F z

d
+ EE F z r F z

dEE

  







         

(22)

The first two terms of this equation together

represent  0 z  in Eq. (14), while the third term is

equal to  1 r,z . Substituting for S and A10 from Eqs.

(16) and (19) in Eq. (14) and equating the coefficient
of r2 to zero one gets

 
 
 4

10

2 2
1

2 2 4 2
0 0

1 r,zd f c

f dz z r f r z


  
  (23)

The boundary conditions on Eq. (23) are f = 1
and df / dz = 0 (plane wave front) at z = 0. Equation
(23) can be reduced to a simpler form by transforming
the coordinate z and the initial beam width r10 to
dimensionless form viz.,

2
10= cz r   and

100 .= r c

Thus, one obtains

   2 22
0 10 1

0 2 3 2

1
1 .

r r, fd f
f

dz f r

 


 
  

 
(24)

Hence the condition for self focusing (f
decreasing with increasing z) of the ripple is

 2 2

0
0

z
d f dz


 . Thus, using Eqs. (21), (21A) and

(21B) the condition comes out to be
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   0 10

2
1 0 cos 1 ,p' EE F z = E E  >    

(25)

where '  is the differential coefficient of  with

respect to the argument.

It is interesting to compare the condition [Eq
(8A)] for the growth of the perturbation in the first
approach to the condition for self-focusing [(Eq.25)]
of the superposed ripple in thesecond approach,
because in both cases the maximum irradiance of the
instability/ripple increases. The right-hand sides of the

two equations are the same when
0 2r k , which

is very nearly equal to 0 'r , the width of the sinusoidal

instability. However, the left-hand sides differ

considerably in having the terms 2
0E  for the first

approach and 0 10 cos pE E  in the second approach.

Thus, the condition for the growth of instability
depends only on their irradiance of the main beam in
the first approach, while in the second approach the
self-focusing depends on the irradiance of the main
beam and that of the rippleas well as the
phasedifference between the two.

Propagation of a Ring Ripple on a Gaussian
Electromagnetic Beam (Paraxial Like Approach)

Consider the propagation along the z-axis of a linearly
polarized Gaussian electromagnetic beam with a small
coaxial perturbation (the ring ripple) having its electric
vector along the y-axis, in a homogeneous plasma.
The effective electric field vector E of the Gaussian
electromagnetic beam with the coaxial ripple can be
expressed as z = 0.

0 exp( )F i tE = j (26)

where

/ 2
2 2

0 0 00 102 2
0 1

( ) exp
2

n

z
r r

F E E
r r


   
     

     
=

2

2
1

exp exp( );
2

p
r

i
r


 
 
  

(27)

F0 refers to the complex amplitude of the
electromagnetic beam, E00 and E10 correspond to the
initial amplitude of the Gaussian beam (with initial
beam width r0) and the ring ripple (with initial beam
width r1) components respectively, n and  are positive
numbers, characterizing the position of the ring ripple
on the wave front of the electromagnetic beam. The
first term on the right hand side of Eq. (27) corresponds
to the Gaussian profile while the second term
represents the radial distribution of the coaxial
perturbation in the form of the ring ripple, having its

maximum at 1 ( )maxr r r n    .

The effective field vector E (or F0) satisfies the
wave equation (5). Taking the solution for F0(r, z) as

 0 0( , ) ( , ) exp (- - ) ,F r z A r z i kz ks  analogous to

equation (15), one obtains two equations viz., (17)
and (18). The only difference is that there is amplitude
of the composite beam A0(r, z) instead of that of the
ripple A10(r, z) only.

To investigate the propagation of the ring ripple
component, far from the axis r = 0, one may use a
paraxial like approximation, which is valid around r =
rmax, the position of the maximum irradiance of the
ring ripple; this is analogous to the usual paraxial
approach. One can thus express Eqs. (17) and (18)
in terms of z and a new variable , where  is a
parameter introduced for algebraic convenience, and
defined as

2
2

2 2
1

r

r f
 

 
  
  

(28)

where ( )n   , 1 ( )r f z  is the width of the ring

ripple and 2 2 2
max 1r r f  indicates the position of the

maximum irradiance of the ring ripple; it is shown
later that Eqs.(17) and (18) lead to retention of the
original profile of the beam during propagation in the

paraxial like approximation i.e., when 2 n  .

In the paraxial like approximation the relevant

parameters (i.e., dielectric function ( , )r z , eikonal
and irradiance) may be expanded around the

maximum of the ring ripple i.e., around 2 0  . Thus



Filamentation Instability of Electromagnetic Beams In Nonlinear Media: A Tutorial Review 929

the dielectric function ( , )z   can be expressed

around 2 0   as

2
0 2( , ) ( ) ( )z z z      (29)

where 0( )z  and 2 ( )z  are the coefficients

associated with0 and2 in the expansion of ( , )z 

around 2 0  . The expressions for these

coefficients have been derived later.

The present paraxial like theory is valid, when

2 n  (Eq.28). This condition defines the range

of 2 2
1/r r  (around ( ))n    for which the theory

is valid.

Such a transformation leads to

2( ) df

z z f dz

 
 

    
   (30)

and

1

1

r r f 
 
  (31)

Thus with the help of Eqs.(29), (30) and (31),
the set of focusing equations [Eqs.(17) and (18)]
reduce to

2( )2
2

S k S df S

k z z f dz

 

 

      
    

2 2

2 2 2
1

( )m S

r f

 


  
   2 2 2

0 1

1

k A r f


2 2
0 0 0 0

2 2 2
1 1A A A A
     

                    

2
2

22 2k c


  


 (32)

and

22 2 2
0 0 0( )A A Ak df

k z z f dz

 

 

      
    

2 2 2
0

2 2 2 2 2
1

1 1m A S S S S

r f

 
     

                    

22
0

2 2 2
1

( )
0m A S

r f

  
 

  
  (33)

In the paraxial like approximation 2 n  , the

solution of Eq.(33) may be chosen as,

2 2
2 2 20 1
0 2 2

exp[ ( )] ( )nE E
A m n

f f
      

2exp[ ( )]  
2 / 20 1

2
( )nE E
n

f
 

21
exp (1 )( )

2 pm Cos       
(34)

where

2
( , ) ( ) ( )

2
S z z z

    , (35)

2
1( )

df
z r f

dz
  ,

1/ 2
2 2 2 0
0 00 00

0

(0)(0)

( ) ( )

k
E E E

k z z



  

       
,

1/ 2
2 2 2 0
1 10 10

0

(0)(0)

( ) ( )

k
E E E

k z z



  

       
,
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2 2
1 0( / )m r r , ( )z  is an arbitrary function of z and

f(z) is the beam width parameter.

For further algebraic analysis, it is convenient

to expand the solution for 2
0A  as a polynomial in 2;

thus

2 2 4 6
0 2 4 60A g g g g      , (36)

where

 
2

2 / 2 ( 1) / 20
0 2

2m n n m
p

E
g e p n e pn e Cos

f

        

(37)

 
2

/ 2 ( 1) / 20
2 2

m n m
p

E
g me pmn e Cos

f

       ,

(38)

2 2
20

4 2
1

2 2
m nE m

g e p n e
nf

   
   

 
,

2
/ 2 ( 1) / 2 1

4 2
n m

p
m

pn e Cos
n

    
 

 
, (39)

2 3
20

6 2 2
1

6 3

m nE m
g e p n e

f n

   
    

 

3
/ 2 ( 1) / 2

2
1

4 243

n m
p

m m
pn e Cos

n n

    
  

 
,

(40)

and 1 0( )p E E .

On substituting for 2
0A  and S from Eqs.(36) and

(35) in Eq.(32) and equating the coefficients of 0

and 2 on both sides of the resulting equation, one
obtains

2
20

0 20 02
1

2
2

dd f df
f g g g

d dd




 

 
  

 

2
0

0 2
d d df

d d d


 

  

             
(41)

and

2
2 0

00 2
d d df

g
d d d


 

  

             

2
0 2 4 22

1
[2 ( 2 ) ]g g g g

f
    , (42)

where 2
1( / )c r z   is the dimensionless distance

of propagation, 1( / )r c   is the dimensionless

initial width of the ring ripple and  = (/c)

( / )c   is the dimensionless arbitrary function

associated with the eikonal. The parameter can be
eliminated between Eqs.(41) and (42); thus

2
30

0 02
1

2

dd f df
f g

d dd




 

 
  

 

22
0 2 4 22

2
[2 ( 2 ) ]

g
g g g g

f
  

2 2 3
0 4 6 22 0 02

1
[4 (2 3 ) ]g g g g g g

f
     

(43)

is the equation which determines the width of the
ripple.

Numerical Results and Discussion

Figure 1 illustrates the dependence of the
dimensionless growth rate  of the self focusing
instability with the dimensionless wave number

 q c q   in the direction transverse to
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propagation, for different values of the dimensionless

background irradiance 2
0A  = 1, 5 and 10. It is seen

that corresponding to a certain value of the beam
irradiance, there is an optimum value of wave number
namely qopt for which the growth rate is maximum.

corresponding to larger values of the irradiance 2
0A

of the main beam.

The variation of beam width parameter f with
the dimensionless distance of propagation  can be
obtained by numerically integrating Eq. (21.) The

dielectric functions  0 f  and  1 ,r f  depend on

the nature of the nonlinearity. For relativistic

nonlinearity, the function  EE   assumes the form

(Esarey et al., 1997).

    1 22 1 1EE EE  
      

where

 2e m c   and /  Fig. 1: Dependence of dimensionless growth rate (c/) of
self-focusing filamentation instability on q , the
dimensionless wave number of the perturbation in
the transverse direction corresponding to the

dimensionless background irradiance 2
0αA  = 1(I),

5(II) and 10(III). The other parameters are

2 2 2
p pΩ = ω ω = 0.5 , 0.12 2

0ν ω =

Figure 2 depicts the variation of both optimum
value of the wave number qopt. and maximum growth
rate max on the uniform background irradiance. It is
seen that max and qopt. increase monotonically. This
may be readily understood as follows; as q increases
the width of disturbance ( the wavelength)
decreases, diffraction becomes more important,
requiring larger magnitudes of nonlinearity,

Fig. 2: Variation of optimum value of the dimensionless
wavenumber qopt. and dimensionless maximum growth
rate (c/w)Gmax with the dimensionless background
irradiance 2

0αA ; 0.52 2
pω ω =

Substituting for EE* from Eq. (20) in the
expression of (EE*) one obtains the two parts of
dielectric function as

     1 2
2 2 2

0 1 1 1+ 2 pf P pf cos p f  


     
(44)

Fig. 3: Three regions for relativistic nonlinearity with
different propagation characteristics in the
dimensionless parameter 10 0p = E E  and

dimensionless ripple width
100ρ = r ω c  for

2Ω = 0.5  and 2
0αE = 5
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and

   2 2

1 2 4
102

pP pf cos p
r, f

r f

 





   3 2
2 2 21 1+ 2 .pP pf cos p f r


    ,

where 2
0P = E ; 10 0p = E E

The expressions for  0 f  and  1 r, f  can be

substituted in Eq. (24), to completely specify the
differential equation which can be integrated keeping
in view the boundary conditions given earlier.

Corresponding to 2 02d f d =  a relation between

0 f   and a critical value of p, say cp p f
can be obtained from Eq. (24). Thus,

 
 

3 2
2

0 02
0 2 2

0

2 1 1+ 2
,

c p c

c p c

P p cos p

P p f cos p




 

   


(45)

where a suffix 0 has been added to pc to indicate its
value at  = 0. It is obvious from Eq. (24) and its
subsequent boundary conditions that if 0 and p0c
satisfy Eq. (45), (i.e. d2f/d2 at  = 0) then f will
remain unchanged all along the path of propagation
of the beam; in other words the beam will propagate
in the uniform wave guide mode. A graph drawn
between 0 and p0c and  is usually termed the critical
curve. If the initial values of the beam width 0 and
the amplitude ratio p = E10/E0 do not lie on the critical
curve the initial value of d2f/d2 will have a positive
value if the point (p, 0) falls below, i.e., on the same
side of the critical curve as the origin and negative if
it falls above, i.e., on the other side. If the initial point
(p, 0) falls above the critical curve f starts decreasing
as the beam propagates through the plasma and the
point (p, 0) shifts towards a lower right direction
meeting the critical curve at some point so that d2f/
d2 equals zero at that value of . This implies a point
of inflexion in the f vs  graph. Consequently the graph
starts turning in the other direction so that df/d
reaches a value of zero at some  and f acquires its
minimum value. This represents the oscillatory self-
focusing mode of propagation. However, if the initial

point falls below the critical curve the point (p, 0)
shifts towards the left upward direction and depending
on the location of the initial point the point (p,0) may
reach the critical curve. In case it does, the beam will
again reach a  value where the f vs  curve has a
point of inflexion and therefore the beam experiences
an oscillatory diverging mode of propagation. We
conclude that the condition for oscillatory divergence
or convergence is the vanishing of d2f/d2 at some
value of  in the path of propagation for which Eq.
(45) must hold which requires

   
2

3

0 2 2
0

2
1

c p c

f
P p cos p


 

     (46)

Equation (46) should yield a real value for  0 f

[0<  0 f <1] for any given values of other

parameters. However, Eq.(44) does not allow a real

value of f for all allowed values of  0 f . One can

easily obtain from Eq.(44):

Fig. 4: Dependence of dimensionless ripple width parameter
f on dimensionless distance of propagation  for (a) p
= 0.1, 0 = 0.3; (b) p = 0.7, 0 = 0.2; (c) p = 0.2, 0 = 0.10;

i n  a l l  c a s e s 2 = 0.5 and 2
0 5=E

 
  

2

2
22

0

2

1

pP pf cos p
f

f







     

where 1 P  

Obviously a real positive value of f requires the
inequality
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  2
0

1 1

1f

 

Substitution of this inequality in Eq. (46), yields

 
3 2

2
0 2 2

0

2

c p cP p cos p





  .

Replacing the inequality sign by an equality, one
gets a curve satisfied by p and 0 which separates
the regions corresponding to steady and oscillatory
divergence. This divider curve can be explicitly
expressed as

 
3 2

2
0 2 2

0

2

c p cP p cos p





 

If the initial point (p, 0) lies above this curve
the propagating ripple will reach a point of inflexion
and, hence, an oscillatory divergence. In case (p, 0)
lies below this divider curve the ripple will diverge
steadily. Thus, the (p, 0) plane can be divided in three
regions such that if the initial point (p, 0) lies:

I) below the divider curve, the ripple diverges
steadily;

II) between the divider curve and the critical curve,
the ripple undergoes oscillatory divergence with
its width varying between the original width and
some maximum; and

III) above the critical curve, the ripple self-focuses,
i.e., the width of the ripple varies, between the
original width and some minimum

The three regions in the  plane have been shown
in Fig. 3. Dependence of the beam width parameter
on the distance of propagation is shown in Fig. 4 for
typical points in the three regions for . For the same
height of the ripple, the corresponding point in the
plane can shift from one region to the other. Thus, for
typical parameters, the pointsc, d, and e correspond
to, respectively. This type of dependence of on  for
the three cases has been shown in Fig. 5.

Fig. 5: Dependence of dimensionless ripple width parameter
f on dimensionless distance of propagation  for p =

0.2, 0 = 0.10; 2 = 0.5 and 2
0 5=E  c, d and e

correspond to p = 0, /3 and 5/3 respectively
(relativistic nonlinearity)
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