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This paper is atutorial presentation of spatia growth of a transverse instability, associated with the propagation of an
el ectromagnetic beam, with uniform or Gaussian irradiance along the wavefront. There are two approaches to the study of
filamentation in aplasma. The results of the two approaches have been expressed in aform where they can be compared.
It has been noted that the growth of the instability in the first approach is equivalent to the self-focusing of aripplein the
second approach. The dependence of the maximum growth rate and the corresponding optimum value of the wave number
of the instability on the irradiance of the main beam has also been studied. Further a paraxial like approach has also been
adopted to analyze the characteristics of propagation of aripple, when the dielectric function is determined by the
composite (Gaussian and ripple) electric field profile of the beam. The effect of different parameterson the critical curves
has been highlighted and the variation of the beam width parameter with the distance of propagation has been obtained for
three typical cases viz of steady divergence, oscillatory divergence and self-focusing of theripple.
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Introduction

There has been considerable interest in the plasma
instability, associated with the propagation of ahigh
power electromagnetic beam. A nonlinear mediumis
susceptible to filamentation instability, which is
characterized by growing electron density and
irradiance fluctuations, transverseto the direction of
propagation of the beam. There are two
complementary approaches to the study of the
filamentation instability in aplasma, as discussed by
Sodhaand Sharma, 2007.

In the first usual approach (Askaryan,1962;
Talanov, 1966; Hora, 1967; Palmer, 1971; Kaw et al .,
1973; Max et al., 1974; Drake et al., 1974;
Mannheimer and Ott, 1974; Perkinsand Valeo, 1974;
Yuetal., 1974; Chen, 1974; Sodhaet al ., 1976a; Sodha
et al., 1976b; Bingham and Lashmore, 1976; Sodha
and Tripathi, 1977; Sodhaand Sharma, 2007; Gurevich,
1978; Perkinsand Goldman, 1981; Kruer et al., 1985;
Epperlein, 1990; Berger et al., 1993; Ghanshyam and
Tripathi, 1993; Wilkset al., 1994; Kaiser et al., 1994,
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Vidal and Johnston, 1996; Lal et al., 1997; Guzdar et
al., 1998; Bendib et al., 2006; Keskinen and Basu,
2003; Gondarenko et al., 2005), one considers an

instability B exp| ik ik ], superposed onahigh

power beam Eg exp[i (ot - kz) |; thesuffixes || and

L refer to the components of the wave number k of
theingability parallel and perpendicular tothedirection
of propagation viz., z axis. The instability grows or
not, as the beam propagates, depending on whether
k|| is imaginary or rea. When k|| is imaginary, the

instability growswith aspatial growthrate ‘i K| ‘ Apart

from the scientific point of view, the results in the
field of filamentation instability are relevant to
ionospheric modification experiments (George, 1970;
Utlaut and Cohen, 1971; Guzdar et al ., 1998; K eskinen
and Basu, 2003; Gondarenko et al., 2005; Perkins
and Goldman, 1981; Gurevich, 1978; Brown, 1973),
beams from proposed satellite power stations
(Gurevich, 1978) passing through theionosphere and
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the field of laser-induced fusion (Kasperczuk et al.,
2006; Chen and Wilks, 2005; Badziak et al., 2005;
Horaet al., 2005; Hora, 2005).

Another approach for the investigation of this
instability is based on the indirect (Loy and Shen,
1969)and direct (Chiligaryan, 1968; Abbi and Mahr,
1971)evidence that filamentation in a nonlinear
medium s caused by the presence of irradiance spikes
in the beam, normal to the direction of propagation.
Following thislead, the growth of a Gaussian ripple
on a plane uniform beam in plasma has been
investigated (Sodhaet al., 1979a; Sodhaet al., 2006;
Sodhaet Al., 2007; Sharmaet al ., 2004) to asignificant
extent; this approach is based on the paraxial theory
of self focusing of electromagnetic beams as
formul ated by Akhmanov et al., 1968 and devel oped
by Sodhaet al., 1976 (a,b) and his associates (Sodha
et al., 1979b; Sodhaet al., 1981; Sodhaet al., 1992;
Sodhaet al., 2004; Asthana et al., 1999; Pandey and
Tripathi, 1990). The growth of aring ripple on a
Gaussian beam has also been investigatedin a
paraxial-like approximation (Sodhaet al., 2009; Misra
and Mishra, 2008; Misraand Mishra, 2009).

Mediawith self-focusing nonlinearity areknown
to be susceptibleto filamentation instability; hence, a
ring perturbation over aGauss an beam may also grow
to alargelevel in the course of propagation. Thisis
duetothefact that thering region, with higher intensity,
would have higher index of refraction and would
attract energy from the neighborhood and grow. Many
researchers (Leemans et al., 1992; Chessa et al.,
1999; LiuandV K Tripathi, 2000) have reported ring
formation when nonlinear refraction causes self
focusing.

Several authors have applied the conditions,
derived for thefirst caseto the second case, possibly
because thefirst caseis more well known and easier
to analyze. In both approaches, one looks for the
conditions and dynamics of growth of the maximum
irradiance asthe beam propagates. The condition for
the growth of the maximum irradiance of the
perturbation in the first approach corresponds to the
condition for onset of self-focusing in the other
approach. Thisis also expected intuitively because
the change in the irradiance (which determines the
magnitude of the nonlinearity) and the width of the
beam (which determinesthe magnitude of diffraction)

arethe main parametersaffecting theinstability/self-
focusing of the perturbation. However, there is an
important difference in the results of the two
approaches. In thefirst approach, the condition for
the onset of the instability is independent of the
irradiance of the perturbation and depends on the
irradiance of the main beam, while in the second
approach, the condition depends on theirradiance of
themain beam aswell asthe perturbation (ripple) and
the phase difference between the two.

In this paper expressionsfor the growth rate of
instability and the condition for ingtability to occur have
been obtai ned and the maximum val ue of the growth
rate and the corresponding value of g, have been
specificaly investigated. Following the other approach
acritical curve between the initial radius and power
of the spike was obtained, such that for all points on
the curve the ripple propagates without change of
width and for points abovethe curve theripplewidth
varied between the initial width and a minimum (in
other words it displayed self-focusing). For points
below the curve, the ripple has either steady
divergenceor oscillatory divergence (the beam width
varying between the original width and amaximum).
The variation of the ripple width with distance of
propagation for typical pointsinthethreeregionshas
also been evaluated and illustrated graphically for
different kinds of nonlinearities(collisional (Sodhaet
al., 1976a), ponderomotive (Hora, 1970) andrdativigtic
(Esarey et al., 1997)) in laser-plasmainteraction. It
is seen that the propagation characteristics of the
ripple strongly depend on theinitial ripple width and
initial power of the beam (including theripple), which
can be expressed asafunction of theamplituderatio
of the ripple and the main beam and the phase
difference between the two.

Several |ater references with similar logic and
directly or indirectly concerned with instability have
been published (Hao et al., 2013; Yang €t al., 2016;
Bawaaneh et al., 2010; Lin et al., 2014; Hasanbeigi
et al., 2013; Fox et al., 2013; Sharma et al., 2016;
Silantyev et al., 2017; Pathak et al., 2015; Grassi et
al., 2017; Alimohamadi and Hgjisharifi, 2017). Despite
different approaches, the status of our understanding
of instabilities has not changed appreciably over the
years. The theory is far ahead of available
experiments.
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Analysis for Beams with Uniform Illumination
Along the Wave Front

Expression for Spatial Growth Rate of I nstability
(First Approach)

Let theelectricfield of abeam of uniformillumination
and that of a small perturbation (filament)
superimposed on the beam be represented by JE,
expi(wt — kz) and JE, expi(wt — kz) respectively.
Thetota field E propagating in theZ direction through
a plasma can be expressed as

E = J(E, + E,) expi(ut — k2) )

where E,, without loss of generality, isareal positive
constant and E, (|E,| << E,) isacomplex parameter,
Jisaunit vector aongy axis, k is the wave number
defined later and w isthe wave frequency. Neglecting

the small contribution ElEI as compared to other
terms, one can write

E-E' =E +E(E+E) )

The effective dielectric function of the plasma
depends on EE" and hence can be expressed as

e (BE )= (B)+e (B) B (B4 E) (3
where
e |9
2 a(E E*)

EE"-E2

The effective electric field vector E satisfies
the wave equation,

VZE-V(V-E)+(2/c?)e(r,2E=0 (4

Where ¢ is the effective dielectric function of
the plasma and C is the speed of light in free space.

In the JWKB approximation j.e, k?V?(Ing)
<< 1, the second term of Eq.(3) may be neglected,
where k is the wave number of propagation. One
can thus write the wave equation, as

V2E + (W) e(r, 2 E= 0 (5)

The wave equation for the total field can be

®
separated for E,and E,. On choosing k :E\/%
the wave equation for E, yieldsasolution

E,= A, (constant)

The wave equation for E, (r, 2) on neglecting

9°E
the term 8—21 (assuming E, (r, 2) to be aslowly
z

varying function of z) and ElEl* , reducesto

2ik—= E1

+|E1——viE1+ eon(E1+E1) ®)

One can express the complex amplitude E, of
the perturbation as

E, =E, +iE,, ()

0 19
+
o ror

However in most of analysesE,, and E;; which are
real have been assumed to be proportional to the

where E, and E; are rea and VZ

complex quantity exp{i (q LX—QHZ)} which is not

consistent. However the results so obtained are the
same as the ones based on the following
considerations, free of any objection. Assuming E, to
be independent of y and proportional to

cos(iqlx—iq” ) one has V2E, = —¢°E, . With this

assumption and using Eqg. (5), one obtains two
homogeneousequationsinE,, and E; (after equating
the real and imaginary parts). Thus

dE; A2 _
2k—aZ A E, =0 (8a)
and

2+ O, = (8b)
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2
20
where A2 =C—282Ag - QE.

Differentiating Egs. (8a) and (8b) with respect

ai daE—]jf Eos.(8b
. an . romEgs.(8b)

and (8a) respectively one gets

to zand substituting for

2 2.2
By 3 A a;
822 - 4Kk e (94)
and
2.2
°E,  ATA]
822 - 4Kk? S (98)

Hence E, grows exponentialy with z, with a
growth rate

2

V2
2 2
ok 2K CTEZAO‘QL} . (10)

From the above equation one obtains the
condition for the growth of the instability (/" being
real) as the beam propagates viz.

2
20 2. 2
_02 e2fy >dj . (1)

Growth of a Gaussian Ring Ripple on a Uniform
Plane Wave Front (Second Approach), Following
Sharma et al. (2004)

Consider the propagation of a linearly polarized
electromagnetic beam with uniform intensity along
its wave front on which a Gaussian ripple is
superposed. Let the electric fields of the two
components be expressed, respectively, as

E, = jE, exp(iot) (12A)

and

E, = JE, expi(0t-¢,) (12B)

Where E, and E, are the amplitudes, w is the
common angular frequency, and f'D is the phase
difference between the main beam and the ripple.
The symmetry of the ripple alows the choice of a
cylindrical system of coordinates with the z axis
perpendicul ar to the wave front and passing through
the point of intensity maximum of theripple. In the
present case, one considers the perturbation to be a
Gaussian ripple at z= 0; hence,

2

E,-E; =Eg exp(—r—z} (13)
r:I.O

where E, isthefield intensity of therippleat z=0

andr = 0andr, istheinitial (z= 0) width of the

ripple. The propagation of the resultant el ectric vector

E =E,+ E, isgoverned by the scalar wave equation

(5).

Assuming the ripple to be a small perturbation
(Ey << K, ), oneexpects Eq. (5) to hold for both E,
and E, separately. As discussed in the analysis,
corresponding to the first approach E, is constant.
For the study of self focusing of the ripple it is
convenient to express the diel ectric constant as

e(r,z)=g,(2)+e,(r,2), (14)

where g, (z) refersto the dielectric function of the

plasmaat points of maximumirradiance and ¢, (r, z)
represents the r dependent remainder.
Following Akhmanov et al. [1968] and Sodha

et al. [1976b] the solution of Eq.(5) for E; may be
written inthe cylindrical coordinate system as

E, = A, (r,z)exp[ -ik(z+ S)], (15)
where
5=0(2)+5B(2) (16)

is the eikonal associated with the electromagnetic
ripple beam and 3(2) is the inverse of the radius of
curvature of the wavefront.

Substituting for E, from Eq. (15) in Eq. (5) and
equating thereal andimaginary parts on both sides of
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theresulting equation, one obtains
) F,(2)= E‘ifié’ cosf,, + 5(’4 (21B)
zsak+2§+(a_s) _.‘31(r,z)Jr 1
k oz 0z \or &(2) KEy The dependence of nonlinear dielectric constant
on the intensity of the beam may be expressed as
O’y , 10E, ,
[ ot 't or (17) =¢o*+0(EE')
and 2
where €, =1- (—2] (in a plasma)
aAfo 0S 3'% A 825 1S AO ok _ ‘”
oz " or 0 o )Tk oz

Substituting for Sfrom Eq. (16 ) in Eq. (17)
oneobtainsfor aninitialy Gaussian ripple (Sodhaet
al., 1976b)

Using Egs. (12A), (15) and (19), one can write
the resultant irradiance as

EE" =(E,+E,).(Eo + El)* =Eg + EO(E1+ El*)

=B +2E°El° S¢pe><p(

2r2f?

(20)
whichinthe paraxial approximation can be expressed
as

EE" =F,(2)-r’F,(2) , (21)

where

5 Em

F(2)=Ef +2—*2cosp, + = (21A)

and

o Seerl )|

From Egs.(20) and (21) one can write

i [ de :
—e,+0[EE =F,(2)] (dEE* )EE*F@ 1R, (2)

(22)

The first two terms of this eguation together
represent €, (z) in Eq. (14), while the third term is
equal to &, (r,z) . Substituting for Sand A, from Egs.

(16) and (19) in Eq. (14) and equating the coefficient
of r2to zero one gets

1d*f c? g, (r,z)
T 42 2 g4 2 (23)
f dz? o’%,(2)rgf® ri%,(2)

The boundary conditions on Eq. (23) aref=1
and df / dz= 0 (plane wave front) at z= 0. Equation
(23) can bereduced to asimpler form by transforming
the coordinate z and the initial beam width r,; to
dimensionlessformviz.,

¢ =cz/or? and p,=rw/c.

Thus, one obtains

2 2,2 f
(1) fzi[l-—po%sl(“ )}'

a9z f° r2 (24)

Hence the condition for self focusing (f
decreasing with increasing z) of the ripple is
2 2 .
(d*f/dz*) <0, Thus, using Egs. (21), (21A) and
(21B) the condition comes out to be
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¢'[ EE" = F,(z= 0) |E,E, cosd, > (1/p?),
(25)

where ¢ is the differential coefficient of ¢ with
respect to the argument.

It is interesting to compare the condition [Eq
(8A)] for the growth of the perturbation in the first
approach to the condition for self-focusing [ (Eqg.25)]
of the superposed ripple in thesecond approach,
because in both casesthe maximum irradiance of the
instability/rippleincreases. Theright-hand sides of the

two eguations are the same when r,= ﬁ/ k, ,which

isvery nearly equal to r,' , thewidth of thesinusoidal
instability. However, the left-hand sides differ
considerably in having the terms E? for the first

approach and E;E,, cosd, in the second approach.

Thus, the condition for the growth of instability
dependsonly ontheir irradiance of themain beamin
the first approach, while in the second approach the
self-focusing depends on the irradiance of the main
beam and that of the rippleas well as the
phasedifference between the two.

Propagation of a Ring Ripple on a Gaussian
Electromagnetic Beam (Paraxial Like Approach)

Consider the propagation a ong thez-axis of alinearly
polarized Gaussian €l ectromagnetic beamwith asmall
coaxia perturbation (thering rippl€e) havingitselectric
vector along the y-axis, in a homogeneous plasma.
The effective electric field vector E of the Gaussian
el ectromagnetic beam with the coaxial ripple can be
expressed as z= 0.

E = jFoexp(iot) (26)
where
r 5 r 5 n/2
(Fo)z=0 = Egpexp| —— |+ Ei0| - —9
2r0 9
r2 .
exp| —— | explidp); (27)
2r1

F, refers to the complex amplitude of the
electromagnetic beam, E, and E, , correspond to the
initial amplitude of the Gaussian beam (with initial
beamwidth r ) and thering ripple (withinitial beam
widthr,) componentsrespectively, n and 6 are positive
numbers, characterizing the position of theringripple
on the wave front of the electromagnetic beam. The
first termontheright hand side of Eq. (27) corresponds
to the Gaussian profile while the second term
represents the radial distribution of the coaxial
perturbation in theform of thering ripple, havingits

maximumat r = gy = 4/(N+38) .

Theeffectivefield vector E (or F) satisfiesthe
wave equation (5). Taking the solution for F(r, 2) as
Fo(r,2) = A(r,2) expli(-kz-ks)], analogous to

equation (15), one obtains two equations viz., (17)
and (18). Theonly differenceisthat thereisamplitude
of the composite beam A(r, 2) instead of that of the
ripple A, (r, z) only.

Toinvestigate the propagation of thering ripple
component, far from the axisr = 0, one may use a
paraxial like approximation, whichisvalid aroundr =
I the position of the maximum irradiance of the
ring ripple; this is analogous to the usual paraxial
approach. One can thus express Egs. (17) and (18)
in terms of z and a new variable x, where is a
parameter introduced for algebrai c convenience, and
defined as

2
2 r
X ‘{ 2f2_ll (29)

where A =(n+3), rf(2) isthe width of the ring

rippleand rr%ax = krlz f 2 indicatesthe position of the

maximum irradiance of the ring ripple; it is shown
later that Eqs.(17) and (18) lead to retention of the
original profileof the beam during propagationinthe

paraxial likeapproximationi.e., when » 2 <n.
In the paraxial like approximation the relevant

parameters (i.e., dielectric function €(r, z) , eilkonal
and irradiance) may be expanded around the

maximum of theringripplei.e., around » 2 _0.Thus
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the dielectric function €(y,z) can be expressed

around 42 =0 as

e(x,2) =e0(d) - % %2(2) (29)

where €g(2) and &5(2) are the coefficients
associated with y% and y2inthe expansion of €(y, 2)

around xzzo. The expressions for these
coefficients have been derived later.

The present paraxial like theory isvalid, when

X 2 n (Eg.28). This condition defines the range

of 12 /r (around A = (n+§)) for which thetheory
isvalid.

Such atransformation leads to

9 _0 (A+xHd 0 ©

dz 0z xf dzoy (30)
and

o0_10

or nf oy (31)

Thus with the help of Egs.(29), (30) and (31),
the set of focusing equations [Egs.(17) and (18)]
reduce to

2S0k | 0S (A +%?%) df 3

— 2= +

k 0z oz x f dzax

5m (%+x2)(§f 1

O [9%Ag 10my N 82A0+18A0

vl g2 x ox a2 A o
0)2

2
—XE—55€2+ (32
kigcz (32

and

k 0z 0z xf dz oy

X ak+[a/>§_<x+x2> df aAg}

SmAs| A [ a%s 19s)| [d*s 10s
2:21 2152 7o T | 32 Y oy
fox"ox® X 9% os XX

. Om 0+ 22) A5 9S _

262 42 o oy

(33)

Intheparaxial like approximation » 2 ., the
solution of Eq.(33) may be chosen as,

2

2_5? _ )\’ 2 2\n
Ay =g PO+ 1 )+ 5 (2%
EoE1 /2
exp[-(A +%2)] * §2 —z ()"
exp[—%(1+ m)(A + 2)}Cos¢ P (34)
where
X2
S(X,Z)=7B(Z)+<P(Z), (35
df
B(z)_r1 fd—

1/2
2 kO )_ 2 [£0(9)
By = Eoo(k(z))—Eoo(go(z)j :

1/2
Ef = Em(tgj Efoin :

eo(2)
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m= (rl2 / r02) , ©(2) isanarbitrary function of zand
f(2) is the beam width parameter.

For further algebraic analysis, it is convenient

to expand the solution for A? asapolynomial in X%
thus

A§=go+gzxz+g4x4+gex61 (36)

where

ES

do= 2( -mh pznne_}‘ +2pnn/2e_(m+1)}‘/2C05¢p)
f

37)

g = ——(me_m)‘ . pmnnlze_(erl)MzCOsbp) |

(38)

2( 2
Eolm® —mn 1 202
=—| —e -—pn'e+
94 £2| 2 on P :

2
n/2_~(m+Hr/2 m 1
pn e ( ) CO&DF)[T_%} , (39)

e, 1 p2ne? 4
6 3n 2

f2

5(

3
o™ 26 (m+1)M2C03bp m 1 _m
4n 3n2 24 ’

(40)

and p=(E/Ep).

On substitutingfor A7 and Sfrom Egs.(36) and
(35) in Eq.(32) and equating the coefficients of
and x2 on both sides of the resulting equation, one
obtains

1df deg 2
2d§ & go 929q

fle ﬁ+
0 42

2

dSO dq)_ i
[ i [ZE }‘(dajn )

and

1
=—51200(92 + 2.04) - 93], 42)

where & = (c/ rlzm)z is the dimensionless distance

of propagation, p = (o /c) is the dimensionless
initial width of the ring ripple and ® = (w/C)p

® = (0 /c)p isthedimensionlessarbitrary function

associated with the eikonal. The parameter ® can be
eliminated between Egs.(41) and (42); thus

fle d2f
0
d&z

292 2
7[290(92 +2Ah04) - A05]

1df deg | 3
2dg dg

1
= —7[490(294+ 31.96) + 9219, - p 293¢ 2

43)
is the equation which determines the width of the
ripple.

Numerical Results and Discussion

Figure 1 illustrates the dependence of the
dimensionless growth rate I" of the self focusing
instability with the dimensionless wave number

=(c/m)qg, in the direction transverse to
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propagation, for different values of the dimensionless

background irradiance o A7 =1, 5and 10. Itisseen

that corresponding to a certain value of the beam
irradiance, thereisan optimum value of wave number
namely Oopt for which the growth rate is maximum.

15

Fig. 1: Dependence of dimensionless growth rate (c/w)I" of
self-focusing filamentation instability on g, the
dimensionless wave number of the perturbation in
the transverse direction corresponding to the

dimensionless background irradiance C(Ag = 1(1),

5(11) and 10(IIl). The other parameters are

Q2 =w’/w’ =05, v?/w? =01

Figure 2 depictsthe variation of both optimum
value of thewave number g, and maximum growth
rate I, on the uniform background irradiance. Itis
seenthat I, and g, increase monotonically. This
may be readily understood as follows; as g increases
the width of disturbance (x the wavelength)
decreases, diffraction becomes more important,
requiring larger magnitudes of nonlinearity,

0.12
0.1

08 11 111

0.
(cla)r
0.06

0.04

0.02

0 01 02 03 04 05 06
q

Fig. 2: Variation of optimum value of the dimensionless
wavenumber g, and dimensionless maximum growth
rate (c/w)G,,, with ghe dimensionless background
irradiance orAg; (L)p w =05

corresponding to larger valuesof theirradiance o A2
of the main beam.

The variation of beam width parameter f with
the dimensionless distance of propagation £ can be
obtained by numericaly integrating Eq. (21.) The

dielectric functions &, (f) and &,(r, f) depend on
the nature of the nonlinearity. For relativistic

nonlinearity, the function ¢ (EE") assumestheform
(Esarey et al., 1997).

0 (EE")=0%[1-(1+aEE) |
where

o =(e/moc)’ and Q=wp /v

0.6
0.5

0.4
Gom.

0.3

0.2 4

o] /

0.0 - T d T \ T T
0 10 20 30 40

aAl

Fig. 3: Three regions for relativistic nonlinearity with
different propagation characteristics in the

dimensionless  parameter p=E,/E, and
dimensionless ripple width pOZFlOQ)/C for

0Q%2=05 and aE2 =5

Substituting for EE* from Eqg. (20) in the
expression of ¢(EE") one obtains the two parts of
dielectricfunction as

so(f):l—92[1+ P{1+(2pf cosp, + pz)/fz}T/2
(44)
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and

QP(pf cosp, + p)

Sl(r’f)z or2f4
10

[1+ P{1+(2pf cosp , + pz)/f 2}Tﬂ.rz,

where P=o.Ej; p= E,/E,

Theexpressionsfor €, (f) and e, (r,f) canbe

substituted in Eq. (24), to completely specify the
differential equation which can beintegrated keeping
in view the boundary conditions given earlier.

Corresponding to d?f /d&?= 0 arelation between

p=p,f and acritical value of p, say p,.=p/f
can be obtained from Eq. (24). Thus,

, 2[1+ P(1+2p,.cosp, + pgc)f2
Po = Q*P(py. f cosp, + p?) -

where a suffix 0 has been added to p, to indicate its
value at £ = 0. It is obvious from Eq. (24) and its
subsequent boundary conditions that if p, and p.
satisfy Eq. (45), (i.e. d?f/d¢? at ¢ = 0) then f will
remain unchanged all along the path of propagation
of the beam; in other words the beam will propagate
in the uniform wave guide mode. A graph drawn
between p, and p,, and isusually termed the critical
curve. If theinitial values of the beam width p, and
theamplituderatio p=E,/E,donotlieon thecritical
curvetheinitia value of d?f/d¢? will have a positive
valueif the point (p, p,) fallsbelow, i.e., onthe same
side of thecritical curve asthe origin and negativeif
itfallsabove, i.e., ontheother side. If theinitial point
(p, py) fallsabovethecritical curvef startsdecreasing
as the beam propagates through the plasma and the
point (p, py) shifts towards a lower right direction
meeting the critical curve at some point so that d?f/
d¢? equals zero at that value of ¢. Thisimpliesapoint
of inflexioninthef vs ¢ graph. Consequently thegraph
starts turning in the other direction so that df/d¢
reaches a value of zero at some ¢ and f acquires its
minimum value. Thisrepresentsthe oscillatory self-
focusing mode of propagation. However, if theinitial

point falls below the critical curve the point (p, p,)
shiftstowardstheleft upward direction and depending
onthelocation of theinitial point the point (p, p,) may
reachthecritical curve. In caseit does, the beam will
again reach a £ value where the f vs £ curve has a
point of inflexion and therefore the beam experiences
an oscillatory diverging mode of propagation. We
concludethat the condition for oscillatory divergence
or convergence is the vanishing of d?/d¢? at some
value of £ in the path of propagation for which Eq.
(45) must hold which requires

_ 2Q?
poP(p.cosp, + p?)

I:l_ g (f ):'3

(46)

Equation (46) shouldyield aredl valuefor ¢, ()

[0<g,(f)<1] for any given values of other
parameters. However, Eq.(44) does not allow areal

value of f for all allowed values of ¢,(f). Onecan
easily obtain from Eq.(44):

0 £ 30

Fig. 4: Dependence of dimensionless ripple width parameter
f on dimensionless distance of propagation £ for (a) p
=01, p,=03; (b) p=0.7, p,=0.2; (c) p=0.2, p, = 0.10;

. 22=05and aEZ=5

o P(2pf cosp , + pz)

[9/{1-¢,(F)}] - A

where A =14+ P

Obvioudly areal positive valueof f requiresthe
inequdity
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Substitution of thisinequality in Eq. (46), yields

g > S
Q”P(py.co8p,, + P7) -

Replacing theinequality sign by an equality, one
gets a curve satisfied by p and p, which separates
the regions corresponding to steady and oscillatory
divergence. This divider curve can be explicitly
expressed as

pz B 2A3/2
-
Q°P(py.cosp, + P?)

If the initial point (p, p,) lies above this curve
the propagating ripple will reach apoint of inflexion
and, hence, an oscillatory divergence. In case (p, p,)
lies below this divider curve the ripple will diverge
steadily. Thus, the (p, p,) planecan bedividedinthree
regionssuch that if theinitial point (p, py) lies:

) below the divider curve, the ripple diverges
steadily;

I1) betweenthedivider curveandthecritical curve,
therippleundergoes oscillatory divergencewith
itswidth varying between the original widthand
some maximum; and
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