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A physically based continuum plasticity model for metals from the consideration of non-equilibrium thermodynamicsis
presented. The modeling is accomplished in a two-temperature framework that appears naturally by considering the
thermodynamic system to be composed of two weakly interacting subsystems, namely the kinetic vibrational and
configurational subsystems. While the atomic vibrations of plastically deforming metals form the kinetic vibrational
subsystem, much slower degrees of freedom in terms of the motion of defects constitute the configurational subsystem.
Both subsystems assume their own temperatures and fall out of equilibrium from each other because of the externally
imposed driving. Dislocation density characterising the configurational subsystemisconsidered to bethe state variablefor
the present devel opment. The continuum model accommodates finite deformation and describes plastic deformation in a
yield-free framework viaamicroforce balance along with the conventional macroforce balance.
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Density

I ntroduction

The physical process of plastic/viscoplastic
deformation of metals is extremely complex and
inherently irreversible. It originates fromthe motion
of microscopic defects, more specifically the
crystallographic dlip caused by dislocations. Even
though, several other mechanismsincluding twining,
grain boundary diding, void growth and so oninfluence
the plastic deformation, we would only consider the
most important component — the dislocation motion
and evolution — as the sole micromechanism
responsible for metal plasticity. The motion of
dislocations through lattice requires overcoming an
energy barrier with theaid of acombination of applied
driving force and thermal fluctuation.The crystal
lattice configuration, namely face-centered cubic
(FCC), body-centered cubic (BCC), hexagonal close-
packed (HCP), playsanimportant rolein determining
theeffect of thermal activation in mechanical response
and consequently plastic deformation of metalsdiffers
from one another depending ontheir crystal structure.

* Author for Correspondence: E-mail: royd@civil.iisc.ernet.in

A crystalline material with dislocations, when
driven by an externa protocol, fallsout of equilibrium
because of self-energy of dislocations. Langer et al.
(2010) argued that a macroscopic system undergoing
plastic deformation may be considered to be composed
of slow configurational degrees of freedom
describing infrequent and intermittent atomic
rearrangement responsible for plastic flow and
kinetic-vibration degrees of freedom that describe
the thermal and vibrational motion of atom.
Consequently, the system may be divided into a
configuration subsystem and a kinetic-vibration
subsystem. Self-energy of dislocations, i.e. theenergy
of the configurational subsystem, along withitsown
entropy defines a new temperature — the
configurationa temperature or effective temperature
— which is different from the thermal or kinetic-
vibrational temperature. As plastic deformation
progresses under the expenditure of external work,
the eff ective temperature evolves differently fromthe
thermal temperature and establishesacurrent of heat
from configurational subsystemto kinetic-vibrational
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subsystem. Consequently, a large fraction of the
external work input that generates dislocation and
keeps them in motion, gets dissipated as heat. This
makes the highly irreversible and dissipative nature
of plastic deformation evident and also indicatesthe
configurational rearrangements to be far from
equilibrium.

In continuum mechanics, a desirable, albeit
challenging, goal isto develop predictiveviscopladticity
models accounting for the complex phenomena of
dislocation evol ution and motion. The models should
beapplicableto awiderangeof temperatureand strain
rates asthe def ormati on response of metalsdepends,to
a large extent, on these two parameters. More
importantly, several engineering applicationsof metals
at high strainrates, e.g., high speed machining,impact
on armor systems, metal forming etc. demand the
understanding of the underlying micromechanism of
plastic deformation and incorporation of themintothe
predictive model in order to optimize and enhancethe
operationsand design of such systems. Over theyears,
there has been a significant progress in the
devel opment of theoriesof plasticity and viscoplasticity
that attempts at representing inelastic constitutive
properties phenomenologically. Theory of local
equilibrium thermodynamics with internal state
variables has been utilized to characterize the
irreversible process of viscoplasticity. At another
remove, there have been anumber of effortstowards
developing physically based theory for viscoplastic
deformation. These models typically do not take
recourse to thermodynamic principles, instead
postulate the constitutive relations in terms of the
evolution equations of dislocation densities. These
equations explicitly contain termsdescribing severa
microscopic phenomena, e.g., dislocation
multiplication, annihilation, grain size effect, effect of
cell boundaries, twining, interaction with lattice and
soon. Inarefined level, such physically based model's
even distinguish among different types of dislocation,
namely mobile, immobile, statistically stored and
geometrically necessary dislocations. They describe
evolution of each of these separately taking into
account their mutual interactions.

For the present work on viscoplasticity
formulation for metals, we would only consider the
mechanisms of dislocation motion and evolutionto be
responsi blefor plastic deformation. Following Langer

et al. (2010), the dislocations are assumed to form
the configurational subsystem where the changes
occur, dueto plastic deformation, much more slowly
compared to the kinetic vibration of the atomic lattice.
Along with the usual forms of force balance, energy
balance etc., we would apply second law of
thermodynamicsto derive constitutiverestrictionsand
evolution equation of dislocation density (p). Again,
continuum formulation for viscoplasticity can be
achieved in different formats, namely consistency
viscoplasticity, Perzyna type model (see Lubliner,
2008; Simo and Hughes, 2006, for both theformats),
yield free theories (Gurtin, Fried and Anand, 2010;
Bodner and Partom, 1975) etc. We would formulate
thepresent theory inayield-free set up following Gurtin
et al. (2010).

Kinematics

Let B, < IR® bethereference configuration of abody
attime t, . Macroscopically, each material point x of
thiscontinuum deforms elasto-viscoplastically toy in
itsgpatia configuration, lS’t , atimet. Thisdeformation

isrepresented by asmoothmap X asy =y (X,t).

X isaone-one and onto map; therefore possesses a

uniqueinverse. The deformation gradient (F), vel ocity
(v) and velocity gradient (L) fields are defined as
follows.

F=V.x, v=y%, L:=VyV=|iF_1, )

where V,,V, and superposed dot respectively

denote the gradient operation with respect to the
material coordinate X, gradient with respect to the
spatial coordinatey and the material timederivative.

In order to separate out the elastic and
viscoplastic parts of F, we opt for its multiplicative
decomposition asfollows.

F = FeFP ©

where, FP(x), alocal plastic deformation at X, carries
the material to a coherent structure residing in the
relaxed intermediate configuration space at x and
F&(x) represents the subsequent rotation and
stretching of the coherent structure. With the
decomposition givenin Eq. (2), thevelocity gradient
L canbe shown to admit the following decomposition.
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L =L®+F°LPFe, 3

where, | ¢ = peFe! and | P = fPEP-L. Elastic and
viscoplastic rate of deformation tensors (D€ and DP)
and spintensors (Weand WP) aredefined asfollows.

D°=sym(L°), D° =sym(L")
We =skew (L°), and WP =skew (L") (4)

We take two kinematical assumptions
concerning the plastic flow: incompressibility and
irrotationality. These two assumptions, translate to
thefollowing conditions.

detFP =1, trL’=0, WP=0 (5)

Plastic irrotationality implies LP = DP and
consequently FP = FPDP. Defining a scalar vP and a
tensor quantity NP as

P
vp:‘Dp‘ and Np:D—pWhenv”>O(6)
v

Eqg. (1) may be recast as
V,v=L=L°+vPFNPFe! 7)

Following the definition of Green-Lagrange
strain tensor in elasticity, we define for the present
case the elastic strain tensor E€ as

e_l eTre _ _1 e _
E _Z(F F |)—2(C I) 8

Since 3 evolvesthrough an observable space,

a change of observer (i.e., a change of reference
frameF — F),therefore, relatesthe observed spatial
coordinatesy and y asfollows.

Yy =x (x,t)=Q(t)x (x,t)+r(t)
= QU)y+r(t)=0(y) ©

Consequently, several tensorid quantitiesdefined
above transform as follows.

F'=QF, F=QF+QF, L'=QQ"+QLQ",
F* =QF®, F” =FP, L” =L", D” =DP",
Le* :QQT +Q|—eQT, De* :QDeQT,
We* :QQT +QWeQT
(10)
Equations of Mation

An essentia ingredient of continuum mechanics is
the equation describing the motion of the body. Itis,
generally, via Cauchy’s hypothesis on the existence
of traction vector, use of laws of linear and angular
momentum balance and a subsequent localization
leading to the derivation of equations of motion.
However, following Gurtinet al. (2010)., inthispaper,
we take the balance of virtual power as a basic
postulate and derive the equations of motion fromthere
as presented below.

Let R denotes an arbitrary subregion of 5

and 07, isitsbounding surfacewith outward normal
n. Principle of virtual power isbased on the balance

between the external power expenditure W, (7)
on R andinternal power expended W/ () within

R . The rate quantities that expend power arev, L©

and vP. However, these rates are not independent,
rather constrained by Eq. (7). Considering an elastic
stress S® and a scalar plastic stress =, the internal

power expenditurewithin F isgiven by

Wi (R) = [ (S7:L°+37mv P Jav

t

(1)

where J = detF = detF¢. ™ and vP being quantities
defined onintermediate configurations, J isused to
bring the plastic power expressed in per unit volume
of intermediate configuration to per unit volume of
current configuration.

Giventraction force vector t(n) working on the
boundary, density of body force b, andinertial force

P,V with p_ to be the mass density, the external

power input W, (R) isgiven by thefollowing.
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W (R) = ft(n)-vd5+7[(b0— PV

IR ?
Wewill henceforth denote (b, — p,.V) by b.

Considering virtual rate fields, ¥,[® and 7P,

consistent with therestriction
~_ e, .vpCe e-1

V V=L +VP FNPF (13)
principleof virtual power balancefor theregion 7 is
stated as

W.(BV)=W.(R,V) VYV (24)
where ) isthe list of virtual velocities: ) =
(v,CovP).

Besides the virtual power principle, the

invarianceof W, (R,V) under change of observer

should also get satisfied. Thisleadsto thefollowing.
W (Pﬂv) = Wr:t (7); 1V*) (15)

Usingthedefinition givenin Eq. (11), Eq. (15) is
rewritten as

_[(Se 15+ 37y P Jav (y)

R

= [(s7:L7+ 3 V" Jav(y') (16)
3

Under change of observer nvP remains
invariant. Therefore Eq. (16) takesthefollowing form.

R R

(17)

Equivalently one may writethefollowinglocal

formexploiting thearbitrarinessof 7 .

$*:[°=5":(QQ"+QLQ")
=Q'S"Q:L*+S":QQ"

Without loss of generality, choosing achange of
frame such that Q is constant, one concludes from
Eqg. (18) that

(18)

S¥ =QSQ’ (19)
Substituting Eq. (19) in Eqg. (18), we get
S¥:QQ" = 0.Forarhitrary Q, QQT isanarbitrary

skew tensor and thus we conclude s¢ = ST and
hence using Eq. (19),

e (20)
Macroscopic Force Balance

To derive macroscopic force balance, let us consider
virtual velocity associated with viscoplastic
deformation to bezero, i.e., P = . Following, Eq.
(13), admissible virtual elastic distortion rate [ is
given by

v,u=0", (2)

where ¥ isarbitrary. Virtual power balance (see Eq.
(14)), inthis case, takesthe following form.

[ t(n)-vds+ [b-vdv=[S°:V, vy
R R

n ! (22)

Using divergencetheoremto theintegral inthe
right hand side of Eq. (22), the equation may berecast
as

_[ (t(n)—Sen)-\‘/ds+j(Vy -Se+b)‘\7dv: 0,

IR R

(23)

which upon localization because of the arbitrariness

of R, leads to the macroscopic force balance and
traction-stressrel ation asfollows.
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V, S+b=0 (24)
Sn=t(n) (25)

Note that arbitrariness of virtual velocity  is

aso used towrite Eq. (24) and (25). The elastic stress
S satisfying Eq. (24) and (25) along with the properties
givenin Eqg. (19) and (20) can be identified with the
classical Cauchy stress T and therefore in what
followswewould replace Seby T.

Microscopic Force Balance

The microscopic force balance can be derived
considering v = Q. Eq. (13) and virtual power balance
Eq. (14), inthis case, take the following forms.

[ = v PFNPFe? (26)

l(T:[%J‘lmT")dv:O @

Arbitrarinessof R again allowslocalization of

Eq. (27), which upon using Eq. (26), takes the
following form.

J_lTE\;p =-T: Ee =-T: (_\}‘PFeN pFe—l)
= (FETTFB—T ‘N p)\;p
= (FeTTOFe‘T ‘N P)\;p

(28)

Thelast equality in Eg. (28), follows using the
factthat trNP=0. Inthislast terms T isthedeviatoric

part of T. \;P being arbitrary, Eq. (28) leads to the
following microscopic force balance.

n=JF"TF*T NP (29

Apart from Cauchy stress T, one may also
define second Piola-Kirchoff type stessT¢and Mendel
stress M€ as

T =JF'TF*T and M°:=C°T® (30)

Intermsof Mendel stress, the microscopicforce
balance Eqg. (29) takesthe following form.

n=MS:N® (31)

Here M isthe deviatoric part of M.

Constitutive Relations

Congtitutiverelation playsacrucia rolein continuum
modelling of material. It provides closure to the
equations of motion via describing stress-strain
relationship for the given material. It is through
constitutive relation that the material behaviour, e.g.
viscoplasticity in the present case, enters the
continuum formulation. Presently, we base our
constitutive theory of viscoplasticity of metals on
dislocation dynamics described through a single
parameter— the dislocation density p. We would not
distinguish among different types of dislocations,
rather would consider p to present their effectsin an
average sense. Thegoal of constitutive modelling here
isto express T and =« in terms of the kinematic
quantities and material parameters, and also to find
out the evol ution equation of dislocation density and
heat flux-temperaturerelation.

First and Second Laws of Thermodynamics

As mentioned in introduction, we take recourse to
two-temperature thermodynamics to model
viscoplastic deformation in metals. To start with, we
state thefirst law of thermodynamics or the internal
energy balance as

Pn€= P —V, -0, (32)

where e, p,, and q are respectively the specific
internal energy, the internal power density and heat
flux vector. We have neglected the external heat
sourceindescribing thefirst law. Theinternal power
density isgiven by

P, =T:L°+J7 v =T:D°+J v’

=J T :E®+J 'nv P (33)
Recadlling that thetotal internal energy density e
and heat flux g are composed of contributions from
two distinct sources, namely the configurational
subsystem and kinetic-vibrational subsystem, we
consider thefollowing additive decomposition

e=e +g and Qq=q.+q,, (34)

where the subscripts ¢ and k denote respectively the
configurational and kinetic-vibrational contributions.
Following Kamrin and Bouchbinder (2014), we
separate the energy balance equation given by Eq.
(32) between two subsystems as
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0,6=J"T:E°+Jnv® -0y —V,-q., (35
and

pm&( :qck_vy'qk’ (36)

Here q,, designates a scalar heat flux that gets
established between the configurational and kinetic-
vibrational subsystemsasthe systemisdriven out of
equilibrium because of theimposed external load. g,
in fact acts as a source of heat for the kinetic-
vibrational system. It iseasy to seethat, when added,
Eqg. (35) and (36) recover the energy balance for the
entire system (see Eq. (32)).

The constitutive relations must be compatible
with the second law of thermodynamicstoo. With the
hypothesis of local equilibrium, the second law
inequality, in absence of external entropy source, may
be stated as

where 7 is the specific entropy and j is the entropy
flux. Again we adopt the additive decompositions: =
n.+ n.andj =j_+]j,. Considering the decomposed
entropy fluxesto be given by thefollowing relations

_ G
0

c

_ %

and jke
k

i (39)

where by 6. and 6, respectively we denote the
configurational or the effective and the kinetic-
vibrational or the ordinary temperature, we may write
the entropy inequality asfollows.

P+ P MtV i +V,- i >0 (39)
6c ek

Substituting for V, -q. and V, -q, form Eq.
(35) and (36), Eq. (39) isrewritten as

pmric + pmﬁk

+ei[\l1 (Te 'ES+mv p)— Oy — pméc}

c

1 ) 1
+e_[qck - pmex]_gqc 'Vyec

K (40)

—izqk-vyek >0
ek

EqQ. (40) is a spatial description of entropy
inequality. Now we transform this inequality to
intermediate frame representation by denoting

p. =Jp,, asthemassdensity of the intermediate

configuration and defining the quantities relative to
volumes, areas and lengths of thisintermediate space
as

& =P & = P& Mo = Paller My
=Pl O = o Qe = P70 Ay
= JF*q,, gL =FV0,, g =FV 0,

y~e?

For ease of exposition, we drop the superscript
| from the notation, and write the intermediate space
description of entropy imbalance asfollowing.

1, +M, +é[Te E°+nv°-q, —éC]

(42)

0y -8]-20,-9, - =0, -g 20
e qck Q< 662qc gc ekzqk gk—

k

Intermediate space representations of Eq. (35)
and (36) take thefollowing forms.

& =T°:E°+nv°-q,-V-q,, Q)
& =0y —V-Qy, (44)

Here, v . isthedivergence operator defined on
the intermediate space and its relation with spatial

divergence is given by V-u=JV, -(J'lFeu) for
any vector field u defined on intermediate space.
Constitutive Relations and Evolution Equations

Weassumee, g, E® alongwiththedidocation density
p act as the independent variables and describe the
state of the viscoplasticity deforming metal. We also
consider the following dependencies

nc =ﬁc (ec’Ee'p)’nk =1'i\k (q)’Te = -’I\-E(Ee)'
(45)

which allowsto expand Eq. (42) asfollows.
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EP +(i—iJ O (46)
1
—gqc-gc—qu-gk 20

Thefirst threetermsof theinequality (46), being
linear in the independent rate quantities €., & and

Ee, theusua Coleman-Noll type argument (Coleman

and Noll, 1963) to ensure the non-negativity leadsto
thefollowing.

1 o, 1 _on
ec_aec’ ek_ q, (47)
and
om. 1
— 4+ —T®|=0
ol

By Sym(A) we denote symmetric part of the
tensor A. However, E® and T*€ both being symmetric

o, 1_,
tensors, E"‘G_T itself is symmetric and

c

therefore, Eq. (48) leadsto the following.

M

Te=-0
° OE°

(49)
Substituting Eq. (47) and (49) into (46), the
entropy imbalance reduces to

— '+invp+ 1 1 q

p " 0, 6, 0, )
1 1 (50)

— 509 —750c "9 0.

ec2 ekz k k

L et usnow assumethat ﬁc admitsthefollowing
decomposition.

N

e (eC’Ee’ p)=ﬁp (p)+ﬁwrr (esurr)
with e, = -8 (p)-&(7) Y

Theconfigurational entropy density and energy

density associated with dislocations, i.e., M, (p ) and

ép (p) , may begiven by thefollowing (Langer, 2015).

M, (p)=%—%ln a’p) and
~ (52)
8, (p) =22

Here L, a and e, are respectively a
characteristic length of dislocation, alength of order
atomic spacing and the energy per dislocation. The

elastic energy € (E®) may be considered to be

Q(E) =52 (i () +uE L

where \ and p are the Lamé parameters. Using Eq.
aY,]\surr _ 1
(51)-(52) , and the fact that Tem—a Eqg. (50)

may be recast as

1(e, 1 11
—I(e—+|n(azp)jp+e—nvp+(a—e—Jqu

1 1
—Qqc-gc—qu-gkzo-
(54)

Heat Flux-temperature Relations

To ensure the non-negativity of entropy production,
we demand all the five terms appearing in the left
hand side of (54) to be individually non-negative.
Choice of the congtitutiverel ationsfor the heat fluxes
in form Fourier’s type law, as given in Eq. (55),
ensures the non-negativity of the last three terms.
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Dislocation Density Evolution

With the ensured non-negativity of thelast threeterms
in(54), it only remainsto ensurethe samefor thefirst
two terms. Evolution of dislocation density intheway
givenin Eg. (55) would guarantee the non-negativity
of thefirst term.

oem ((;iﬂn(azp)j,

L (56)
M =M(Gc,ek,v p,p)z 0
Eq. (56) may be approximated as
o= M(l— ﬂj, (57)
Po

0

C

1 &%
where pO:?exp ~5 |. As suggested by

Langer (2015), we consider Af =

‘ ﬁ(@c,ec,v ",p)v P

P Yo
number, 7 isthe constitutive function for themicro

, Where kp isanon-negative

stresstand Y, = €, / L isenergy of dislocation per
unit length.

Constitutive Relation for =

. .. i p
It is now remaining to ensure g v 20 gy

Cc
definition (see Eq. (6)), vPisnon-negative and thisis
truefor 6_too. Thereforethe only requirement isthat
consgtitutive relation for = should be such that it is
aways non-negative. To find out this constitutive
relation for w, we take recourse to the theory of
thermal activation of did ocation. For the present work,
we only focus on FCC metals. The kinetic equation

relating vP and = for FCC metals can be given in the
followingArrheniusform.

pbl” kgT, n
= exp| — exp| ——
T, p{ 0, P T; (58)

Here |* is some mean free path or average
distance between dislocations, b the magnitude of

Vp

Burgersvector, T, ! amicroscopic attempt frequency

of the order of 10 per second. ks T, is the thermal
barrier of the potential in which the didocation is
trapped in absence of external driving. kj refers to
the Boltzmann constant. 7 isthe Taylor stressgiven
asm, = pr\/E , where . is proportional to shear

modulus . For further details see Langer et al.
(2010). Inverting Eq. (58), we get the constitutive
relation for 7 as

o ol 2

(59)

Temperature Evolution

From Eq. (43) and (44), evolution equations for
effective temperature and kinetic-vibrational
temperature may be derived. Towardsthis, we assume

the dependencies g =6 (0,) and e, = &

C

(GC ,E%,p ) which allowsto computethe energy rates

asfollows.
L :
& :a_ekek =& (6,0, (60)
0é. . o0é .. oé
5 =—%0 +—2:E°® €0
& 20, ¢t oE° + o p (61)

Teking partia derivativeof Eq. (51) with respect
to E€, we get

W= (62)

c

aﬁc _ aﬁsurr _aéc (Ee) __i aé(:
OE®  de,, oE® |



Two-Temperature Continuum Model for Metal Plasticity 255

We rewrite Eqg. (61) using Eq. (49), (52) and
(62) as

& =GO, +T°:E®+y,p (63)

In Eq. (60) and (63), G, and C, respectively
denote the specific heat of kinetic-vibrational
subsystem and configurational subsystem. Using Eq.
(60), (63) and (55), the energy balance equationsgiven
by Eq. (43) and (44) can be written in the form of
temperature evol ution equations as

écéc =7y P _YDp _kck (ec _ek)+v'(kcgc) (64)

and

ékék = kck (ec _ek)+v'(kkgk) (65)
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