An asymmetric hybrid watermarking mechanism using hyperchaotic system and random decomposition in 2D Non-separable linear canonical domain

  • Pankaj Rakheja NorthCap university
  • Rekha Vig
  • Phool Singh
Keywords: 4D hyperchaotic system, Random decomposition, 2D non-separable linear canonical transform


In this paper, an asymmetric hybrid watermarking scheme utilizing four-dimensional (4D) hyperchaotic system with coherent superposition and random decomposition in 2D non-separable linear canonical domain is proposed. The 4D hyperchaotic framework is used for creating permutation keystream for a pixel-swapping mechanism. Its parameters and initial conditions along with the independent parameters of the 2D Non separable linear canonical transform extend the key-space and consequently strengthen the proposed watermarking scheme. The designed watermarking scheme has an extended key-space to avoid any brute-force attack and is non-linear in nature. The scheme is validated on gray-scale images. Computer based simulations have been performed to validate the robustness of the proposed watermarking scheme against different types of attacks. Results demonstrate that the proposed scheme not only offers higher protection against brute force and occlusion attacks but is also invulnerable to special attack.


[1] P. Refregier, B. Javidi, Optical image encryption based on input plane and Fourier plane random encoding, Opt. Lett. 20 (1995) 767–769. doi:10.1364/OL.20.000767.
[2] G. Unnikrishnan, J. Joseph, K. Singh, Optical encryption by double-random phase encoding in the fractional Fourier domain, Opt. Lett. 25 (2000) 887–889. doi:10.1364/OL.25.000887.
[3] G. Situ, J. Zhang, Double random-phase encoding in the Fresnel domain, Opt. Lett. 29 (2004) 1584–1586. doi:10.1364/OL.29.001584.
[4] X.C. Cheng, L.Z. Cai, Y.R. Wang, X.F. Meng, H. Zhang, X.F. Xu, X.X. Shen, G.Y. Dong, Security enhancement of double-random phase encryption by amplitude modulation, Opt. Lett. 33 (2008) 1575–1577. doi:10.1364/OL.33.001575.
[5] Kumar Nishchal, J. Joseph, K. Singh, Naveen, Securing information using fractional Fourier transform in digital holography, Opt. Commun. 235 (2004) 253–259. doi:10.1016/j.optcom.2004.02.052.
[6] W. Chen, X. Chen, C.J.R. Sheppard, Optical image encryption based on diffractive imaging, Opt. Lett. 35 (2010) 3817–3819. doi:10.1364/OL.35.003817.
[7] X. Deng, D. Zhao, Multiple-image encryption using phase retrieve algorithm and intermodulation in Fourier domain, Opt. Laser Technol. 44 (2012) 374–377. doi:10.1016/j.optlastec.2011.07.019.
[8] P. Singh, A.K. Yadav, K. Singh, Phase image encryption in the fractional Hartley domain using Arnold transform and singular value decomposition, Opt. Lasers Eng. 91 (2017) 187–195. doi:10.1016/j.optlaseng.2016.11.022.
[9] S. Liu, Q. Mi, B. Zhu, Optical image encryption with multistage and multichannel fractional Fourier-domain filtering, Opt. Lett. 26 (2001) 1242–1244. doi:10.1364/OL.26.001242.
[10] W. Liu, Z. Liu, S. Liu, Asymmetric cryptosystem using random binary phase modulation based on mixture retrieval type of Yang-Gu algorithm, Opt. Lett. 38 (2013) 1651–1653. doi:10.1364/OL.38.001651.
[11] Z. Liu, H. Chen, T. Liu, P. Li, L. Xu, J. Dai, S. Liu, Image encryption by using gyrator transform and Arnold transform, J. Electron. Imaging. 20 (2011) 013020. doi:10.1117/1.3557790.
[12] N. Zhou, Y. Wang, L. Gong, Novel optical image encryption scheme based on fractional Mellin transform, Opt. Commun. 284 (2011) 3234–3242. doi:10.1016/j.optcom.2011.02.065.
[13] L. Chen, D. Zhao, Optical image encryption with Hartley transforms, Opt. Lett. 31 (2006) 3438–3440. doi:10.1364/OL.31.003438.
[14] E. Tajahuerce, O. Matoba, S.C. Verrall, B. Javidi, Optoelectronic information encryption with phase-shifting interferometry, Appl. Opt. 39 (2000) 2313–2320. doi:10.1364/AO.39.002313.
[15] J.-J. Huang, H.-E. Hwang, C.-Y. Chen, C.-M. Chen, Lensless multiple-image optical encryption based on improved phase retrieval algorithm, Appl. Opt. 51 (2012) 2388–2394. doi:10.1364/AO.51.002388.
[16] S. Zhao, L. Wang, W. Liang, W. Cheng, L. Gong, High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique, Opt. Commun. 353 (2015) 90–95. doi:10.1016/j.optcom.2015.04.063.
[17] Y. Sheng, Z. Xin, M.S. Alam, L. Xi, L. Xiao-feng, Information hiding based on double random-phase encoding and public-key cryptography, Opt. Express. 17 (2009) 3270–3284. doi:10.1364/OE.17.003270.
[18] M.R. Abuturab, Group multiple-image encoding and watermarking using coupled logistic maps and gyrator wavelet transform, J. Opt. Soc. Am. A Opt. Image Sci. Vis. 32 (2015) 1811–1820.
[19] J. Li, An optimized watermarking scheme using an encrypted gyrator transform computer generated hologram based on particle swarm optimization, Opt. Express. 22 (2014) 10002–10016. doi:10.1364/OE.22.010002.
[20] A.K. Yadav, S. Vashisth, H. Singh, K. Singh, A phase-image watermarking scheme in gyrator domain using devil’s vortex Fresnel lens as a phase mask, Opt. Commun. 344 (2015) 172–180. doi:10.1016/j.optcom.2015.01.019.
[21] S. Liansheng, Z. Bei, W. Zhanmin, T. Ailing, An optical color image watermarking scheme by using compressive sensing with human visual characteristics in gyrator domain, Opt. Lasers Eng. 92 (2017) 85–93. doi:10.1016/j.optlaseng.2017.01.003.
[22] J. Lang, Z. Zhang, Blind digital watermarking method in the fractional Fourier transform domain, Opt. Lasers Eng. 53 (2014) 112–121. doi:10.1016/j.optlaseng.2013.08.021.
[23] Q. Guo, Z. Liu, S. Liucora, Image watermarking algorithm based on fractional Fourier transform and random phase encoding, Opt. Commun. 284 (2011) 3918–3923. doi:10.1016/j.optcom.2011.04.006.
[24] J. Li, X. Zhang, S. Liu, X. Ren, Adaptive watermarking scheme using a gray-level computer generated hologram, Appl. Opt. 48 (2009) 4858–4865. doi:10.1364/AO.48.004858.
[25] O.E. Okman, G.B. Akar, Quantization index modulation-based image watermarking using digital holography, JOSA A. 24 (2007) 243–252. doi:10.1364/JOSAA.24.000243.
[26] W.-J. Hwang, H.-T. Chan, C.-J. Cheng, Hologram authentication based on a secure watermarking algorithm using cellular automata, Appl. Opt. 53 (2014) G64–G73. doi:10.1364/AO.53.000G64.
[27] Z. Li, F. Xia, G. Zheng, J. Zhang, Copyright protection in digital museum based on digital holography and discrete wavelet transform, Chin. Opt. Lett. 6 (2008) 251–254.
[28] D. Mendlovic, N. Konforti, Optical realization of the wavelet transform for two-dimensional objects, Appl. Opt. 32 (1993) 6542–6546. doi:10.1364/AO.32.006542.
[29] B. Javidi, C.M. Do, S.H. Hong, T. Nomura, Multi-Spectral Holographic Three-Dimensional Image Fusion Using Discrete Wavelet Transform, J. Disp. Technol. 2 (2006) 411–417. doi:10.1109/JDT.2006.885156.
[30] I. Mehra, N.K. Nishchal, Optical asymmetric watermarking using modified wavelet fusion and diffractive imaging, Opt. Lasers Eng. 68 (2015) 74–82. doi:10.1016/j.optlaseng.2014.12.006.
[31] K. Deng, G. Yang, H. Xie, A blind robust watermarking scheme with non-cascade iterative encrypted kinoform, Opt. Express. 19 (2011) 10241–10251. doi:10.1364/OE.19.010241.
[32] Y. Ishikawa, K. Uehira, K. Yanaka, Optimization of Size of Pixel Blocks for Orthogonal Transform in Optical Watermarking Technique, J. Disp. Technol. 8 (2012) 505–510.
[33] A.P. Starchenko, Using the discrete cosine transformation to construct a hologram for the task of embedding hidden watermarks, J. Opt. Technol. 78 (2011) 176–179. doi:10.1364/JOT.78.000176.
[34] N. Mittal, A.S. Bisen, R. Gupta, An improved digital watermarking technique based on 5-DWT, FFT SVD, in: 2017 Int. Conf. Trends Electron. Inform. ICEI, 2017: pp. 561–566. doi:10.1109/ICOEI.2017.8300763.
[35] J.J. Healy, M.A. Kutay, H.M. Ozaktas, J.T. Sheridan, eds., Linear Canonical Transforms: Theory and Applications, Springer-Verlag, New York, 2016. // (accessed July 5, 2018).
[36] J.-J. Ding, S.-C. Pei, Eigenfunctions and self-imaging phenomena of the two-dimensional nonseparable linear canonical transform, JOSA A. 28 (2011) 82–95. doi:10.1364/JOSAA.28.000082.
[37] L. Zhao, J.J. Healy, J.T. Sheridan, Sampling of the two dimensional non-separable linear canonical transform, in: Opt. Model. Des. III, International Society for Optics and Photonics, 2014: p. 913112. doi:10.1117/12.2052549.
[38] A. Koç, H.M. Ozaktas, L. Hesselink, Fast and accurate computation of two-dimensional non-separable quadratic-phase integrals, JOSA A. 27 (2010) 1288–1302. doi:10.1364/JOSAA.27.001288.
[39] J. Cai, X. Shen, M. Lei, C. Lin, S. Dou, Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition, Opt. Lett. 40 (2015) 475–478. doi:10.1364/OL.40.000475.
[40] X. Deng, Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition: comment, Opt. Lett. 40 (2015) 3913–3913. doi:10.1364/OL.40.003913.
[41] S.P. Barfungpa, M.R. Abuturab, Asymmetric cryptosystem using coherent superposition and equal modulus decomposition of fractional Fourier spectrum, Opt. Quantum Electron. 48 (2016) 520. doi:10.1007/s11082-016-0786-5.
[42] H. Chen, C. Tanougast, Z. Liu, L. Sieler, Asymmetric optical cryptosystem for color image based on equal modulus decomposition in gyrator transform domains, Opt. Lasers Eng. 93 (2017) 1–8. doi:10.1016/j.optlaseng.2017.01.005.
[43] A. Fatima, I. Mehra, N.K. Nishchal, Optical image encryption using equal modulus decomposition and multiple diffractive imaging, J. Opt. 18 (2016) 085701. doi:10.1088/2040-8978/18/8/085701.
[44] Y. Wang, C. Quan, C.J. Tay, New method of attack and security enhancement on an asymmetric cryptosystem based on equal modulus decomposition, Appl. Opt. 55 (2016) 679–686.
[45] H. Xu, W. Xu, S. Wang, S. Wu, Phase-only asymmetric optical cryptosystem based on random modulus decomposition, J. Mod. Opt. 65 (2018) 1245–1252. doi:10.1080/09500340.2018.1431314.
[46] N. Sharma, I. Saini, A. Yadav, P. Singh, Phase-Image Encryption Based on 3D-Lorenz Chaotic System and Double Random Phase Encoding, 3D Res. 8 (2017). doi:10.1007/s13319-017-0149-4.
[47] X. Chai, Y. Chen, L. Broyde, A novel chaos-based image encryption algorithm using DNA sequence operations, Opt. Lasers Eng. 88 (2017) 197–213. doi:10.1016/j.optlaseng.2016.08.009.
[48] J.-X. Chen, Z.-L. Zhu, C. Fu, L.-B. Zhang, Y. Zhang, Cryptanalysis and improvement of an optical image encryption scheme using a chaotic Baker map and double random phase encoding, J. Opt. 16 (2014) 125403. doi:10.1088/2040-8978/16/12/125403.
[49] A.M. Elshamy, A.N.Z. Rashed, A.E.N.A. Mohamed, O.S. Faragalla, Y. Mu, S.A. Alshebeili, F.E.A. El-Samie, Optical Image Encryption Based on Chaotic Baker Map and Double Random Phase Encoding, J. Light. Technol. 31 (2013) 2533–2539. doi:10.1109/JLT.2013.2267891.
[50] C. Fu, G. Zhang, M. Zhu, Z. Chen, W. Lei, A New Chaos-Based Color Image Encryption Scheme with an Efficient Substitution Keystream Generation Strategy, Secur. Commun. Netw. (2018). doi:10.1155/2018/2708532.
[51] A. Chen, J. Lu, J. Lü, S. Yu, Generating hyperchaotic Lü attractor via state feedback control, Phys. Stat. Mech. Its Appl. 364 (2006) 103–110. doi:10.1016/j.physa.2005.09.039.
[52] J. Butcher, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods, {John Wiley & Sons Inc}, 1987.
[53] H. Xu, W. Xu, S. Wang, S. Wu, Asymmetric optical cryptosystem based on modulus decomposition in Fresnel domain, Opt. Commun. 402 (2017) 302–310. doi:10.1016/j.optcom.2017.05.035.
[54] R. Kumar, J.T. Sheridan, B. Bhaduri, Nonlinear double image encryption using 2D non-separable linear canonical transform and phase retrieval algorithm, Opt. Laser Technol. 107 (2018) 353–360. doi:10.1016/j.optlastec.2018.06.014.
[55] B. Lee, H. Kim, J. Hahn, H. Lee, Diffractive-optic three-dimensional image generation with spatial light modulators, in: 2007 Conf. Lasers Electro-Opt. - Pac. Rim, 2007: pp. 1–2. doi:10.1109/CLEOPR.2007.4391672.
Research Papers