Research Paper

A General type of Liénard Second Order Differential Equation: Classical and Quantum Mechanical Study

BISWANATH RATH ${ }^{1, *}$, PRAVANJAN MALLICK ${ }^{1,{ }^{1, *},}$, JEAN AKANDE ${ }^{2}$, PRACHIPRAVA MOHAPATRA ${ }^{1}$, D K K ADJAÏ ${ }^{2}$, L H KOUDAHOUN ${ }^{2}$, Y J F KPOMAHOU ${ }^{3}$, MARC D MONSIA ${ }^{2, \#}$ and RATI RANJAN SAHOO ${ }^{4}$
${ }^{1}$ Department of Physics, North Orissa University, Takatpur, Baripada 757 003, Odisha, India
${ }^{2}$ Department of Physics, University of Abomey-Calavi, Abomey-Calavi, 01.B.P. 526, Cotonou
${ }^{3}$ Department of Industrial and Technical Sciences, ENSET-Lokossa, University of Abomey, Abomey, Benin
${ }^{4}$ Department of Computer Science and Engineering, Hi-Tech Institute of Technology, Bhubaneswar 752 057, Odisha, India

(Received on 22 August 2017; Revised on 08 November 2017; Accepted on 09 November 2017)

Abstract

We generate a general model of Liénard type of second order differential equation and study its classical solution. We also study the eigenvalues the Hamiltonian generated from the differential equation.

Keywords: Liénard Differential Equation; Classical Solution; Phase Portrait; Hamiltonian; Eigenvalues; Matrix Diagonalization Method

Introduction

Liénard equations are widely used in many branches of science and engineering to model various types of phenomena like oscillations in mechanical and electrical systems. Particularly, for more than fifty years, there has been a continued interest among different authors for paying attention on Liénard type differential equation (Harko et al., 2013; Monsia et al., 2016):

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+f(x)\left(\frac{d x}{d t}\right)^{2}+x g(x)=0 \tag{1}
\end{equation*}
$$

where $f(x)$ and $g(x)$ are functions of x. Further using suitable choice of $f(x)$ and $g(x)$, one can show that it admits position-dependant mass dynamics and hence will be useful for several applications of quantum physics such as finite gap system (Bravo and Plyushchay, 2016), heterojunctions (Morrow and Brownstein, 1984; Morrow 1987), soliton (Ganguly and Das, 2014), construction of coherent states (Ruby and Senthilvelan, 2010), string physics (Susskind and

Uglum, 1996), flux background (Gukov et al., 2004), etc. These types of second order differential equation are interesting for physicists provided one generates suitable Hamiltonian. For all possible values of $f(x)$ and $g(x)$, it may not be possible to generate Hamiltonian having stable eigenvalues. Secondly a classical model solution can also be obtained using He's approximation (He, 2008a; 2008b; Geng and Cai, 2008; Rath, 2011) by using procedure given below

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+f(x)\left(\frac{d x}{d t}\right)^{2}+x g(x)=R(t) \tag{2}
\end{equation*}
$$

Let us consider now two different values of x as

$$
\begin{equation*}
x_{1}=A \cos \omega_{1} t \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{2}=A \cos \omega_{2} t \tag{4}
\end{equation*}
$$

then

[^0]\[

$$
\begin{equation*}
\omega^{2}=\omega_{2}^{2}=\frac{R_{2}(0) \omega_{1}^{2}-R_{1}(0) \omega_{2}^{2}}{R_{2}(0)-R_{1}(0)} \tag{5}
\end{equation*}
$$

\]

where $\omega_{1}=1$. In this paper, we address the above differential equationby selecting a general type of values on $f(x)$ and $g(x)$, and generate suitable Hamiltonian and study its stable eigenvalues.

General type of Differential Equation and Solution

Here we consider a general type of differential equation as

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\frac{N \lambda x^{N-1}}{2\left(1+\lambda x^{N}\right)}\left(\frac{d x}{d t}\right)^{2}+\omega_{0}^{2} \frac{K x^{K-1}}{2\left(1+\lambda x^{N}\right)}=0 \tag{6}
\end{equation*}
$$

where $N, K=2,4,6, \ldots$. In this equation one has to fix the value of K and vary N or vice versa. Let us consider the general solution of this differential equation as

$$
\begin{equation*}
x=A \cos \omega t \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega=\omega_{0} \sqrt{\frac{K A^{K-2}}{2\left(1+\lambda A^{N}\right)}} \tag{8}
\end{equation*}
$$

Hamiltonian Generation

In order to generate Hamiltonians we multiply the differential equation by \dot{x} and rewrite it as

$$
\begin{equation*}
\frac{d\left[\frac{\dot{x}^{2}\left(1+\lambda x^{N}\right)+\omega_{0}^{2} x^{K}}{2}\right]}{d t}=0 \tag{9}
\end{equation*}
$$

Let the bracket term be denoted as H where
$H=\frac{1}{2}\left[\dot{x}^{2}\left(1+\lambda x^{N}\right)+\omega_{0}^{2} x^{K}\right]$
Now define momentum, p as

$$
\begin{equation*}
p=\frac{\partial H}{\partial \dot{x}} \tag{11}
\end{equation*}
$$

Hence one can write the Hamiltonian, H as

$$
\begin{equation*}
H=\frac{1}{2}\left[\frac{p^{2}}{\left(1+\lambda x^{N}\right)}+\omega_{0}^{2} x^{K}\right] \tag{12}
\end{equation*}
$$

Comparing the above Hamiltonian (Eq. (12)) with $H=\frac{p^{2}}{2 m}+\frac{\omega_{0}^{2} x^{K}}{2}$, One will find that the mass, m is a function of x i.e., $m(x)=1+\lambda x^{N}$. Further, we find an extensive study on the position dependence of mass pertaining to various aspects have been carried out by several authors (von Roos, 1983; Quesne and Tkachuk, 2004; Koç and Tütüncüler, 2003; Dutra et al., 2003; Bagchi et al., 2006; Ganguly et al., 2006; Ganguly and Nieto, 2007; Lévai and Özer, 2010; Killingbeck, 2011; Mazharimousavi, 2012; Yahiaoui and Bentaiba, 2012; Mustafa, 2015; Rajbongshi and Singh, 2015). In the present case, we study the discrete nature of spectra and its stability for the newly generated Hamiltonian (Eqn. (12)) with different values of K and N.

Eigenvalues of Generated Hamiltonian

Here we solve the eigenvalue equation

$$
\begin{equation*}
H|\psi\rangle=E|\psi\rangle \tag{13a}
\end{equation*}
$$

using matrix diagonalization method (Rath et al., 2014; Rath, 2015), in which $|\psi\rangle$ is expressed as

$$
\begin{equation*}
|\psi\rangle=\sum_{m} A_{m}|m\rangle \tag{13b}
\end{equation*}
$$

Here $|m\rangle$ satisfy the exact eigenvalue equation

$$
\begin{equation*}
H_{0}|m\rangle=\left(p^{2}+x^{2}\right)|m\rangle=(2 m+1)|m\rangle \tag{14}
\end{equation*}
$$

Now using the above formalism, we get the following recursion relation satisfied by A_{m} as

$$
\begin{equation*}
\sum_{k=2,4,6, \ldots} P_{m}^{k} A_{m-k}+S_{m} A_{m}+R_{m}^{k} A_{m+k}=0 \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{m}^{k}=\langle m| H|m-k\rangle \tag{16a}
\end{equation*}
$$

$$
\begin{equation*}
R_{m}^{k}=\langle m| H|m+k\rangle \tag{16b}
\end{equation*}
$$

$$
\begin{equation*}
S_{m}=\langle m| H|m\rangle-E \tag{16c}
\end{equation*}
$$

In fact one will notice that the above Hamiltonian is not invariant under exchange of momentum p and $\frac{1}{\left(1+\lambda x^{N}\right)}$.Hence following the literature (Rath 2008)
we write the invariant Hamiltonian as

$$
\begin{equation*}
H=\frac{1}{2}\left[p \frac{1}{\left(1+\lambda x^{N}\right)} p+\omega_{0}^{2} x^{K}\right] \tag{17}
\end{equation*}
$$

and reflect the first four states eigenvalues in Table 1.

Table 1: First four eigenvalues of Hamiltonians with $\omega_{0}=1, \lambda=1$

Hamiltonian	Value of n	Eigenvalue
$H=\frac{1}{2}\left[p \frac{1}{\left(1+x^{2}\right)} p+x^{2}\right]$	0	0.355026280
	1	1.226397537
	2	1.846999994
	3	2.445481398
$H=\frac{1}{2}\left[p \frac{1}{\left(1+x^{4}\right)} p+x^{2}\right]$	0	0.338179394
	1	1.199312190
	2	1.770479342
	3	2.154962590
$H=\frac{1}{2}\left[p \frac{1}{\left(1+x^{2}\right)} p+x^{4}\right]$	0	0.342163615
	1	1.447762223
	2	2.733381643
	3	3.824351590
$H=\frac{1}{2}\left[p \frac{1}{\left(1+x^{4}\right)} p+x^{4}\right]$	0	0.326786311
	1	1.447762223
	2	2.733381643
	3	3.824351590
$H=\frac{1}{2}\left[p \frac{1}{\left(1+x^{2}\right)} p+x^{6}\right]$	0	0.354476360
	1	1.652542050
	2	3.294555429
	3	5.270061821
$H=\frac{1}{2}\left[p \frac{1}{\left(1+x^{4}\right)} p+x^{6}\right]$	0	0.341508635
	1	1.617435142
	2	3.393428656
	3	5.181678146

Phase portrait in the (p, x) plane

Classical phase trajectories of the system (Eqn. (12)) (for $N=K=2$ and $N=4, K=2$) are represented in the Figs. 1 and 2 for different parametric choices.

Fig. 1: Classical phase trajectories of the Hamiltonian $\operatorname{system}(12)$ with $\omega_{0}=\lambda=1, N=K=2$, for various values of A

Fig. 2: Classical phase trajectories of the Hamiltonian $\operatorname{system}(12)$ with $\omega_{0}=\lambda=1, N=4, K=2$, for various values of A

Plots reflected in these figures indicate the closed elliptical orbit which clearly justifies the stable behaviour of the system. Similar behaviour has also been reflected for the Hamiltonian with different values of N and K. The quantum mechanical phase trajectories of the system (Eqn. (12)) for $N=K=2$ and $N=4, K=2$ are also represented in the Figs. 3 to 4 for different eigenvalues. The representative plot

Fig. 3: Phase trajectories of the Hamiltonian system (12) with $\omega_{0}=\lambda=1, N=K=2$, for various values of $E=H$

Fig. 4: Phase trajectories of the Hamiltonian system (12) with $\omega_{0}=\lambda=1, N=4, K=2$, for various values of $E=H$
$\left|\psi_{n}\right|^{2}$ of first four eigenstates of Hamiltonian given in eqn. (17) with $N=K=2$ and $N=4, K=2$ are shown in Figs. 5 and 6 respectively. We have also seen the similar nature in other Hamiltonians. Here we notice that the nature of phase portraits and corresponding probability are closed orbits thereby justifying the stability of Hamiltonians from both classical and quantum mechanical point of view. At this point, we would like to state that the nature of phase portrait and corresponding probability justify the discrete nature of real spectra and its stability. It is worth mentioning here that the bra state may diverge and its corresponding ket state may converge while the bracket remains the invariant when one study under

Fig. 5: Wavefunction for the Hamiltonian system (12) with $\omega_{0}=\lambda=1, N=K=2$, for (a) $n=0$, (b) $n=1$, (c) $\mathbf{n}=2$ and (d) $\mathbf{n}=\mathbf{3}$
co-ordinate and momentum transformation in complex space (Rath and Mallick, 2016). Classical portrait defined that there exists kinks in the orbit. In order to justify the nature of kinks we plot the probability which is more suitable representation.

Conclusion

In this paper, we formulate a general type of Liénard differential equation which can be regarded as position dependent mass quantum system. We present analytical solution on its classical motion. Classically we also studied the phase portrait for different amplitude of motion and noticed that classically the Hamiltonians are stable. In order to present a complete

Fig. 6: Wavefunction for the Hamiltonian system (12) with $\omega_{0}=\lambda=1, N=4, K=2$, for (a) $\mathbf{n}=\mathbf{0}$, (b) $\mathbf{n}=1$, (c) $\mathbf{n}=2$ and (d) $\mathrm{n}=3$
picture, we calculate eigenstates numerically as the said the equation cannot be solved analytically. The quantum phase portrait has been studied considering $\mathrm{E}=\mathrm{H}$. Further, we plot $\left|\psi_{n}\right|^{2}$ of first four eigenstates and notice that $\left|\psi_{n}\right|^{2}$ goes to zero as x goes to infinite. This implies that the suggested quantum systems are stable and can yield discrete eigenvalues irrespective of quantum system. We hope to study further on spectral variance under co-ordinate and momentum transformation in complex space (Rath and Mallick, 2016) without changing the nature of probability (Rath, 2017) in a given quantum system.

112102-1-20
Ganguly A, Kuru S, Negro J and Nieto LM (2006) A study of the bound states for square potential wells with positiondependent mass Phys Lett A $\mathbf{3 6 0}$ 228-223
Ganguly A and Nieto L M (2007) Shape-invariant quantum Hamiltonian with position-dependent effective mass through second-order supersymmetry J Phys A 40 72657281

Geng L and Cai Xu-Chu (2007) He's frequency formulation for nonlinear oscillators Eur J Phys 28 923-931

Gukov S, Takayanagi T andToumbas N (2004) Flux backgrounds in 2-D string theory J High Energy Phys 03017
Harko T, Lobo F S N and Mak M K (2013) A Chiellini type integrability condition for the generalized first kind Abel
differential equation Uni J Appl Math 1(2) 101-104 (References cited there in)

He J H (2008a) An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering Int J Mod Phys B 22(21) 3487-3578

He J H (2008b) Comment on 'He's frequency formulation for nonlinear oscillators Eur J Phys 29 L19-L22

Killingbeck J P (2011) The Schrödinger equation with positiondependent mass J Phys A: Math Theor 44 285208-1-6
Koç R and Tütüncüler H (2003) Exact solution of position dependent mass Schrödinger equation by supersymmetric quantum mechanics Ann Phys 12 684-691

Lévai G and Özer O (2010) An exactly solvable Schrödinger equation with finite positive position-dependent effective mass J Math Phys 51 092103-1-13

Mazharimousavi S H (2012) Revisiting the displacement operator for quantum systems with position-dependent mass Phys Rev A 85 034102-1-4

Monsia M D, Akande J, Adjai D K K, Koudahoun L H and Kpomahou Y J F (2016) A Class of Position-Dependent Mass Liénard Differential Equations Via a General Nonlocal TransformationviXra:1608.0226v1; Exact Analytical Periodic Solutions with Sinusoidal Form to a Class of Position-Dependent Mass Liénard-Type Oscillator Equations viXra:1608.0368v1
Morrow R A (1987) Establishment of an effective-mass Hamiltonian for abrupt heterojunctions Phys Rev B 35 8074-8079

Morrow R A and Brownstein K R (1984) Model effective mass Hamiltonians for abrupt heterojunctions and the associated wave function matching conditions Phys Rev B 30 678680

Mustafa O (2015) Position-dependent mass Lagrangians: nonlocal transformations, Euler-Lagrange invariance and exact solvability J Phys A: Math Theor 48 225206-1-11

Quesne C and Tkachuk V M (2004) Deformed algebras, position dependent effective masses and curved spaces: An exactly
solvable Coulomb problem J Phys A 37 4267-4281
Rajbongshi H and Singh N N (2015) Generation of exactly solvable potentials of the D-dimensional position-dependent mass Schrödinger equation using the transformation method Theor Math Phys 183 715-729

Rath B (2008) Bogoliubov's canonical transformation approach on a harmonic oscillator: exponential decaying mass Phys Scr 78 065012-1-3

Rath B (2011) Some Studies on: Ancient Chinese Formalism, He's Frequency Formulation for Nonlinear Oscillators and "Optimal Zero Work" Method Orissa J Phys 18(1) 109116

Rath B (2017) Equivalent multiple complex SUSY for real SUSY Asian J Phys Chem Sci 3(1) 1-6

Rath B and Mallick P (2016) Energy and Wave function Analysis on Harmonic Oscillator Under Simultaneous NonHermitian Transformations of Co-ordinate and Momentum: Iso-spectral case Open Physics 14 492-497

Rath B, Mallick P and Samal P K (2014) Real Spectra of Isospectral Non-Hermitian Hamiltonians The African Rev Phys 90027 201-205
Rath B (2015) Iso-spectral Instability of Harmonic Oscillator: Breakdown of Unbroken Pseudo-Hermiticity and PT Symmetry Condition The African Rev Phys $100051427-$ 434
Ruby V C and Senthilvelan M (2010) On the construction of coherent states of position dependent mass Schrödinger equation endowed with effective potential J Math Phys 51 052106-1-14

Susskind L and Uglum J (1996) String physics and black holes Nucl Phys Proc Suppl 45 BC 115-134

Von Roos O (1983) Position-dependent effective masses in semiconductor theory Phys Rev B 27 7547-7552
Yahiaoui S A and Bentaiba M (2012) Pseudo-Hermitian coherent states under the generalized quantum condition with position-dependent mass J Phys A 45 444034-1-12.

[^0]: *Authorfor Correspondence: E-mail: biswanathrath10@gmail.com, **pravanjan_phy@yahoo.co.in, \#monsiadelphin@yahoo.fr

