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Anarithmetic circuit (respectively, formula) isarooted graph (respectively, tree) whose nodes are addition or multiplication
gates and input variables/nodes. It computes apolynomial inanatural way. Theformal degree of an addition (respectively,
multiplication) gate with respect to avariable x is defined as the maximum (respectively, sum) of the formal degrees of its
children, with respect to x. The formal degree of an input node with respect to x is 1 if the node is labelled with x, and 0
otherwise. In amulti-r-ic formula, the formal degree of every gate with respect to every variableis at most r. Multi-r-ic
formulas make an intermediate model between multilinear formulas (ther = 1 case), for which lower bounds arerélatively
well-understood, and general formulas (the unbounded-r case), which are conjectured to have superpolynomial sizelower
bound.

On depth four multi-r-ic formulas/circuits computing IMM, , — the product of d symbolic metrices of size n x n each,

)sz(\/d )

Kayal, Saha and Tavenas (Kaya et al., 2016b) showed alower bound of (d% (where N ~ n?d, the total number of

underlying variables). Asafunction of N and r, thelower bound isat most Zg(m) when d = ©(N/r?), and so for the bound

to remain superpolynomial (asafunction of N), r can beat most NV3. Our work proves asuperpolynomial lower bound (as
afunction of N) on the same model (but computing aVNP-polynomial), for r ashigh as (N log N)°°. It also yields a better
lower bound than that of (Kayal et al., 2016b), when viewed as afunction of Nand r.

Theorem: Let N, d, r be positive integers such that 0.5IN < d < 0.9N and r < (N log N)°°, There is an explicit N-variate

NlogN
r

degree-d multilinear polynomial in VNP such that any multi-r-ic depth four circuit computing it has size 29

Keywords: Arithmetic Circuits; Multi-r-ic Formulas; Lower Bounds; Shifted Partial Derivatives, Nisan-
Wigderson Polynomial

I. Introduction Thelatter hasresulted in the emergence of algebraic
complexity theory — a branch of computational

In the recent years, algebraic computation has been complexity theory

attracting wide attention. Algebraic computationisa

recurring featurein algorithmsfor problems such as Arithmetic Circuits and Formulas

matrix multiplication, determinant computation, fast

Fourier transform, factoring polynomials (and !N agebraic complexity theory, many interesting
integers), computing ged etc., which have practical guestions have connection with the efficiency of
applications in various technological and scientific ~ computation of polynomials. Of themany modelsthat
fields. Unsurprisingly, theoretical computer scientists aredefined to capture the computation of polynomials
have closely investigated both thealgorithmicandthe N @ Step-by-step and succinct fashion, arithmetic
complexity theoretic aspects of algebraic operations. circuits seemto be natural and appealing. Section |11
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givesaformal description of arithmetic circuits (and
formulas). An exampleof an arithmetic circuit (which
isalso aformula) computing the polynomial x2 + xy +
xz+yzisshowninFig. 1. Two parameters associated
withan arithmetic circuit are size and depth: they are
defined respectively as the number of edges and the
length of the longest directed path in the circuit.
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Fig. 1: An arithmetic circuit computing x2 + Xy + Xz + yz

Under this model, broadly three kinds of
problemsare studied, namely lower bounds, polynomid
identity testing (PIT), and circuit reconstruction.
Roughly, alower bound problem seeks to show that
every arithmetic circuit computing an explicit
polynomial f must be of at least certain size. InPIT,
the problem is to efficiently check whether a given
arithmetic circuit computes the identically zero
polynomial. It isahighly important derandomization
problem. Thecircuit reconstruction/learning problem
isasfollows: A polynomial fis given as a ‘blackbox’
which hasthe ability totake asinput afield element t
(a query) and output f (t). The goal is to efficiently
design acircuit computing f using few queriesto the
blackbox. These three problems have some
fascinating connections among them.

L ower Bounds

Lower bounds are more interesting when the
polynomial f in question is a ‘naturally occurring’ one,
such asthe Det, . Det, is the determinant of annx n
matrix whose entriesare distinct symbolic variables,
making Det, an n*-variate degree-n polynomial. Itis
believed that every arithmetic formulacomputing Det,
requires a superpoly(n) size. In comparison, thereis
an efficient — i.e., poly(n)-sized — arithmetic circuit
that computes Det . On the other hand, consider
Perm, , the permanent polynomial. (Perm, isobtained
by replacing every every -1 coefficient with +1 in
the polynomial Det ). It is known due to (Burgisser,

2000) that if thefamous conjectureP = NP istrue(in
the nonuniform setting) then every arithmetic circuit
over C computing Perm_must have superpoly(n) size,
assuming the generalized Riemann Hypothesis. This
isrestated in terms of classes VP and VNP (Valiant,
1979) - the arithmetic analogues of (nonuniform) P
and NP respectively: P = NP (nonuniformly) = VP
= VNP over C (under the generalized Riemann
Hypothesis). This connection suggests that working
first towards proving VP = VNP is plausible, and
motivatesthe goal of proving superpolynomial lower
bounds against VNP-polynomials (i.e. against
polynomial familiesin VNP).

The lower bound problem has an interesting
connection with derandomizing PIT. Kabanets and
Impagliazzo (Kabanets and Impagliazzo, 2004)
showed that a superpolynomial (similarly, ex-
ponential) lower bound for arithmetic circuitsimplies
subexponential (smilarly, quasipolynomial) timePIT.
In the other direction, Agrawal (Agrawal, 2005)
showed that apolynomid timeblackbox PIT agorithm
implies a superpolynomial lower bound for circuits
computing an explicit (PSPACE-computable)
polynomid.

Some Known Formula Lower Bounds

While the conjectured lower bound for formulas
computing Det, issuperpoly(n), thebest knownlower
bound for the same is Q(n%) (Kalorkoti, 1985). (A
slightly better Q2(N?) bound is known for formulas
computing an N-variate VNP-polynomial)™. Thislong-
standing wide gap has prompted the community to
consider restricted variants of formulas and prove
better lower bounds for them. Multilinear formulas
are one such variant: in a multilinear formula, the
formal degree of every gate with respect to every
variableisat most 12. In other words, the formulais
syntactically forced to compute a multilinear
polynomial. A polynomial issaid to bemultilinear if its
degree with respect to every variable is at most 1.
Thechoiceof multilinearity congtraint isjustified from
the fact that important polynomials such as Det,,
Perm,, IMM_ 4 (which s the (1,1)-th entry of the
iterated product of d symbolic matrices of sizenxn
each) areal multilinear.

1The best known lower bound for circuitsis (N log N), against
acertain N-variate VNP-polynomial.

2Similarly, multilinear circuits are defined.
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A lower bound of n¥1°9" on multilinear formulas
computing Det, (and Perm,) was shown by Raz (Raz,
2009). Subsequently (Raz and Yehudayoff, 2008, 2009)
showed asuperpolynomial lower bound on multilinear
circuits of constant depth computing Det, .

Formulas with High Formal Degree

Keeping in mind the open problem of superpoly-
nomial lower bound on general formulas, particularly
with amultilinear polynomial (like Det,) asthetarget
polynomial to becomputed, it isnatural at thispoint to
wonder how general formulas compare with
multilinear formulas. The total formal degree of a
multilinear formula is bounded by the number of
variables N, whereas that of a general formula is
virtually unbounded (rather bounded by size of formula
which can be much larger than N). This makes it
difficult to adapt many of the prevalent proof
techniquesto general formulas, asthey seemto only
work when the total formal degree is low. General
formulas, having essentially a free hand on the
maximum formal degree, can employ ‘clever’
cancellationsof high degreemonomiasat intermediate
gates and use this possibility to efficiently compute
some otherwise hard multilinear polynomias. For
example, the best known circuit of depth threed
computing Det, (which is of degree n) has formal

degree paom (Gupta et al., 2013). This prompted
Kayal and Saha (Kayal and Saha, 2015) to turn the

attention to high formal degree models and define
multi-r-ic formulas.

Multi-r-ic Formulas

In a multi-r-ic formula the formal degree of every
gatewith respect to every variableisat mostr. Clearly,
multilinear formulas are ther = 1 case of multi-r-ic
formulas. The circuit shownin Fig. 1isamulti-2-ic
formula (albeit computing a non-multilinear
polynomial). Multi-r-ic formulas, alowing the total
formal degree as high as r times the number of
variables, form an intermediate model between
multilinear and general formulas.

Homogeneous Formulas

Another direction of attack could be to first reduce
general formulasto homogeneous formulas and then
prove a prove a lower bound on homogeneous

Sover fields of characteristic zero

formulas. A formulais homogeneousif every gatein
it computes a homogeneous polynomial. (It follows
that thetotal formal degree of ahomogeneousformula
is ‘low’, in fact exactly the degree of the polynomial
computed). However, we do not know of any
efficient* formulahomogenizing algorithm (although
such an algorithm is known for circuits (Strassen,
1973)), unlessthe degree of the polynomial computed

logN
loglogN

isaslow as 0[ j (Raz, 2013). Nevertheless,

ahomogenous formulais an interesting model inits
own right and proving superpolynomial lower bounds
for it would be a great progress.

Depth Reduction

Yet another possiblerouteto proving superpolynomial
formula(infact, circuit) lower bound goes viadepth
reduction. A series of works (Vaiant et al., 1983;
Agrawal and Vinay, 2008; Koiran, 2012; Guptaet al.,
2013; Tavenas, 2013) imply that any arithmetic circuit
of size scomputing an N-variate degree-d polynomial
can be transformed into a depth three circuit of size
ooWde@ieat)  (provided the underlying field is of
characteristicszero). Henceif oneshowsasufficiently
high superpolynomial lower bound of Ne~® ondepth
three circuits computing a VNP-polynomial, then a
superpolynomial lower bound on general circuits
immediately follows, proving VP = VNP. Animportant
point here, relevant to the preceding discussion, isthat
the depth three circuit resulting from the depth
reduction potentially has as high aformal degree as
oewdd@ioat)  \Ne note that a similar depth reduction
result also holds for homogenous depth four circuit,
but there the formal degree is not high. In essence,
these depth reduction results show that low depth
circuits, particularly depth threeand depth four circuits,
serve as an interesting testbed for proving lower
bounds.

Previous Works on Multi-r-ic Formulas

Kaya and Saha (Kayal and Saha, 2015) proved a
222" [ower bound on multi-r-ic formulasof depth

three, computing a certain (non-multilinear)
polynomial. The choice of depth threeisnatural: itis
the smallest depth at which we do not know of a

4costing only a poly-size blowup



910

Sumant Hegde and Chandan Saha

superpolynomial circuit/formula lower bound®. As
mentioned before, another important motivation for
depth three (and four) comesfromthe depth reduction
results.

Kayal, Saha and Tavenas (Kayal et al., 2016b)
improved the dependence on r and showed a lower

bound of (2)™* for depth three multi-r-ic formulas

computing IMM_ ;. Further they showed a lower

Q(/dir

bound of (n/r*) ’ for multi-r-ic depth four

formul ascomputing the same polynomiad. They proved
animproved lower bound of 2™ on depth three multi-
r-ic circuits (computing amulti-r-ic VNP-polynomial).
(Kayal et al., 2016b) also showed that a certain
polynomia computed by asmall multi-r-ic formulaof
depth three is ‘hard’ for multi-r-ic homogeneous
formulas of arbitrary depth. The underlying hopeis,
techniques used to prove depth three and depth four
multi-r-ic formulalower boundswill shed somelight
ongenera multi-r-ic fomulasjust likein themultilinear
(r = 1) case — for instance, the proof of multilinear
formulalower bound using log-product formula (Raz
and Yehudayoff, 2009), whichisakind of multilinear
depthfour formula.

Il. Our Results

While (Kayal et al., 2016b) show anontrivial lower
bound on depth four multi-r-ic circuits for r < N3,
wegive alower bound on the samemodel that remains
superpolynomial for awider rangeof r (seediscussion
after the theorem).

Theorem 1. Let N, d, r be positive integers such
that 0.5IN<d<0.9Nandr < (N log N)°°. Thereis
an explicit N-variate degreed multilinear polynomial
in VNP such that any multi-r-ic depth four circuit

NIogN)

computing it hassize 29( :

Comparison with Previous Results

Better Range on r

In (Kayal et al., 2016b), alower bound of (%j )

5In the context of superpolynomial lower bound and a constant
depth like three or four, we use terms circuits and formulas
interchangeably. This is because when the depth is a constant,
the circuit-to-formula conversion only costs poly-size blowup.

was shown for multi-r-ic depth four circuitscomputing
IMM_ 4 where N ~ n’d. For the bound to remain

superpolynomial, r can beat themost min (\/g,d) .The

expression min (\/gd) ismaximizedat d = NY3, and r
has to be less that NY3. We show a lower bound of
" for d e [0.51N, 0.9N] and r < (N log N)°*

which remains superpolynomial in this range for r.
Observe that a higher range for r essentially means
we prove lower bound for newer classes of depth
four circuits.

Improved Lower Bound

For any fixed functionr =r(N), (Kayal etal., 2016b)’s

lower bound of (dt‘zjg(m ismaximized (asafunction

N N .
of Nand r) to ZQ\E] a d =®(;). In comparison,

Theorem 1 shows a bound of ZQ[JN'TQN] _whichisan
asymptotically better function of Nandr.

Extending the Result of Raz and Yehudayoff (Raz
and Yehudayoff, 2009)

The best known lower bound for multilinear (r = 1)
depth four circuitsis yewveem (Raz and Yehudayoff,
2009). Our result can be seen as an extension of this
lower bound to multi-r-ic depth four circuits, athough
the proof techniques in (Raz and Yehudayoff, 2009)
andinherearequitedifferent. In particular, (Raz and
Yehudayoff, 2009) used rank of apartial derivatives
meatrix asthe measure whereaswe use the dimension
of shifted partial derivatives, denoted asSP (seebel ow
for more details).

Proof Outline and Comparison with Previous
Proof Techniques

The proof of Theorem 1 followsatemplatefor depth
four circuit lower bound that isalready existinginthe
literature, particularly in (Kayal et al., 2016b) andin
related prior works. We briefly describe the proof
outline before listing the differences with (Kayal et
al., 2016b). The proof hasthe following structure:

1.  Reduction to low-bottom-support depth four
circuits (step 1): Consider a depth four multi-
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r-ic circuit of ‘small” size computing a ‘hard’
polynomial H. At first, we show that thereexists
arestriction of the circuit (i.e. setting of some
variablesto field constantsinthe circuit) which
convertsit into amore structured circuit called
a low-bottom-support depth four circuit
computing arestriction of H (say, F). Section
Il has the precise definition of low-bottom-
support depth four circuits, and the reductionto
thiskind of circuitsisformally stated in Lemma
3 (Section 1V).

2. Lower bound for low-bottom-support circuits
(step 2): In this step, we show that any low-
bottom-support depth four circuit must havehigh
size (in particular, high top fanin) in order to
compute F from step 1. Lemma 4 (which is
stated in Section IV and proved in Section V)
has the formal statement of this lower bound.
Theboundisachieved by proving (in Lemmab5)
that circuits of this kind having low top fanin
have a low shifted partials measure (defined
in Section 111), and subsequently provingin step
3 below that F has a high measure. Here, a
measure is afunction that maps polynomialsto
integers.

3. Constructing the hard polynomial H (step 3):
Finally, a VNP-polynomial H having high
measureisconstructed in thisstep. For this, we
pick a variant of the Nisan-Wigderson
polynomial, whichwasdefinedin (Kayal etal.,
2014, 2016a). The construction is inspired by
thewell known Nisan-Wigderson design (Nisan
and Wigderson, 1994) and Reed-Solomon codes
(Reed and Solomon, 1960). Basically, H is
defined in such away that itsrestriction Fisa
multilinear polynomia whose monomias are
sufficiently “far’ from each other. In this sense,
the monomials correspond to codewords of a
good code. Theprecise congtruction of Fisgiven
in Section VI, and that of H (using the
construction of F) isgivenin Section V. Lemma
6 (which is stated is Section V and proved in
Section VI) shows that F has a high measure.

Theabovethree stepstogether imply ahigh lower
bound on the size of any depth four multi-r-ic circuits
computing H. Asmentioned before, much of the proof
machinery isborrowed from earlier works. However,

we opt to present the proof in detail not only because
of self containment but also because our parameter
settings are often different from that in prior works.

The difference between (Kayal et al., 2016b)
and our proof isin the exact choice of the measure
and the hard polynomial:

1. The choice of the measure: (Kayal et al.,
2016b) introduced a measure called shifted
skewed partials, avariant of an already existing
measure (defined in (Kayal, 2012)) called shifted
partials (SP). For our proof, SP suffices. (Kayal
et al., 2016b)’s focus was to get the lower bound
asafunction of bothNand di.e., the number of
underlying variables and the degree of the
polynomial computed respectively. For low
degree (and IMM,, as the target polynomial),
(Kayd et al., 2016b) found that a certain ‘skew’
between two sets of variables, with suitable
parameters, was crucia in obtaining a better
lower bound. However, for high degree, it seems
that the skew doesnot offer an added advantage.
Instead, we use SP itself as the measure and
prove an improved bound for a high degree
range. The improvement also stems from the
different hard polynomial we choose.

2. The choice of the hard polynomial: (Kayal et
al., 2016b) used IMM ;, a VP-polynomial,
whereas our proof works with a VNP-
polynomial, ensuring that the latter has a
sufficiently high SP measure.

I11. Preliminaries

We use abold letter, like X, y etc., to denote a set of
variables. Elements of x are denoted by x,, X5, ... EfC.
and are called x-variables. We denote with y= the
set of monomialsin x-variables of degreeat most ¢ .
Let f beapolynomia. Then deg, f denotesthe degree
of f with respect to variable x, and deg f denote the

total degreeof f. Also, for setsSand § of polynomials,
expressions f -S,S/ f, and s.§ naturally denotethe
sets{fg:gc $,{g/f:gc S and{g§:geS,ge S
lively, [n] denotesthe set { 1,2,... ,n} and N the set of

natural numbers. For aset x and integersa < b, the
set of all subsets of x of size between a and b

(inclusive) is denoted by (;4}), and simply by (%)
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whena=b. ‘log’ and ‘In” denote logarithms to base
2 and base e respectively. Sometimeswe usetheterm
poly(n) to mean n°M, We assume N, the number of
variables, to be sufficiently large (so asto legitimize
inequalitiesthat hold asymptotically). Also, sometimes
we omit floor (| |) and ceil ([ 1) notations for real-
valued functions of N, d etc. for simplicity of
presentation, without affecting any of theimplications.

Some Well-known Bounds
For areal number x,
l+x<es (@D}

Forintegers1 < k< n,

HRHEG

Chernoff Bound

Let X be the sum of severa independent 0-1
random variables. Then for any constant € > 0,

PrIX > (1+e)E[X]] < e= EXI3,
Pr{X < (1+¢)E[X]] < e=?EXI/3,
Arithmetic Circuits

We specify some of the concepts, stated in Section |,
in a bit more details. The reader familiar with these
may skip thispart. Anarithmetic circuit isadirected
acyclic graph in which every node with in-degree O
(called input node) is labelled with a variable or a
field element, and every node with positivein-degree
is labelled with either *+’ (in which case the node isa
addition gate) or ‘x’ (in which case the node is a
multiplication gate). If thereis an edge from a node
utoanodevthenuiscalled achild of v. With every
nodewe associate apolynomial and say that the node
computes the polynomial, asfollows: An input node
is said to compute what it is labelled with. A sum
(respectively product) gate issaid to compute the sum
(respectively product) of the polynomials associated
with its children. We consider circuits which have
exactly oneroot, i.e. the node with out-degree 0, and
acircuit is said to compute the polynomial its root
computes. Also, we allow edges to be labelled with
field constants. If an edge from node u to node v is
labelled with a constant o and u is computing a

polynomial f then v considers of, rather than meref,
asthe input coming from u.

Thesize of acircuit isthe number of edgesiniit.
The depth of acircuit isthelength of thelongest path
from an input node to the root. An arithmetic circuit
in which all nodes have out-degree at most one is
caled a formula.

Depth Three and Depth Four Circuits

By a depth three circuit (also called a X113 circuit)
wemean acircuit that hasatop addition gatefollowed
by alayer of multiplication, gatesand finally abottom
layer of addition gates. Similarly a circuit with a
addition gate on top, followed by a layer of
multiplication gates, then a layer of addition gates
again, and finally abottom layer of multiplication gates
corresponds to a depth four circuit (also called a
SIIXII circuit). Further if the monomials computed
at the bottom layer of multiplication gates of adepth
four circuit are such that each of them has at most ~
variables appearing in it, then we say that the depth
four circuit has 7-bottom-support.

Formal Degree

The formal degree of an input gate g with respect to
avariable xisdefined to be 1 if g islabelled with x,
and 0 if g islabelled with a different variable or a
field element. The formal degree of a sum.
(respectively product) gate g with respect to a
variablexisdefined to be the maximum (respectively
sum) of theformal degreesof its children with respect
to x.

Multi-r-ic Formulas

Let r beapositiveinteger. A multi-r-ic formulaisan
arithmetic formulasuch that every gateinit hasformal
degree at most r with respect to every variable. If r =
1, amulti-r-ic formulaiscalled amultilinear formula.
A polynomial issaid to be multilinear if the degree of
every variable is at most one in every monomial of
thepolynomial. Clearly, multilinear formulas compute
multilinear polynomials.

Arithmetic Complexity Classes

A family of polynomials{f } over afield I, indexed
n>1,isintheclassVP if thereisapolynomia p:
N — N such that for every n, f_ has at most p(n)
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variables, has degree at most p(n) and can be
computed by acircuit of sizeat most p(n). A family
of polynomials {f } over F isin VNP if thereis a
polynomial family {g} in VP and polynomials

p, p:N— N such that

fXp s X)) =

g(xl,...,xp(n),vvl,...,wp(n)).

Itisclear that VP C VNP. In alater section, to
check whether a polynomial f_ isin VNP we use
Valiant’s criterion: If there is a poly(n)-time
algo- rithm to output the coefficient of a given
monomid inf_ thenf € VNP (Valiant, 1979).

The Shifted Partials Measure

Let F be afield. For integer parametersk, ¢ >0, the

shifted partials dimension is afunction SP, , : F[x]

— N defined as follows. Let f € F[x]. For any

multilinear degree-k monomial 1 = X X, - X0 We
o f

write 0, f to denote m .Also, for aset S

of polynomials we write d,S to denote the set
{0, f: f eS8, whichwill beconvenientin SectionV.
Let 0 f denotetheset{d, f:u :isamultilinear
monomial of degree k}. We define
SP._ (f)=dim(spam, (x* -9 ) ©)
Thefollowing property is easy to establish.

Proposition 2 : (Subadditivity). Letf, g € F[x]. Then
SPM(f +0)< SPkyé(f)+Sij(g) )

IV. Proving Theorem 1

In Section VI we describe a multilinear

polynomia F, (y) where y is the set of underlying

variables and d is the degree. Polynomia F, has
mainly two properties:

1. Ithas (X2%) monomiaswherek= ks ./=ss,

and al of them are of degree d , i.e, F, is
homogeneous.

2. For any two multilinear monomials , and s,
|,\iey| is @t least 0.006d . Here 1i,\u, refersto

the set of variables appearing in y, but not in
p,- Note that [p,/p,| = |u \u,|. We call it the
distance between i, and i,

We use F, to define the polynomial H
(mentioned in step 1 of the proof outline in Section
).

Polynomial H

Let X, u, v be sets of variables of size Ny, N and
0.02N, respectively, making a total of 2.02N, = N
(say) variables. Alsolet p denotetherange[0.957N,,,
0.97N,]. Let d be any integer in [0.51N, 0.9N]. Set

d=d- 091N, and so Ge [0.06N,, 0.85N,].

Polynomial H, which is N-variate and of degree d ,
isdefined asbelow:

H(x,u,v)d;

Yeo]]
28

injey

0.97Ng-y|

u - V.
=1

(4)

Polynomial H ishomogeneousand multilinear.

Proof of Theorem 1. Let C be a multi-r-ic depth
four circuit computing H. H defines apolynomial in
VNP, aswe will show at the end of Section VI (after

fully describing F, (y)).
The sparsity of a depth four circuit is defined

as the sum of the fanin of nodes at the bottom
summation layer. If the sparsity of C is greater than

2\} "™ then soisthesize of C and thereisnothingto

prove. Hence we assume from now on that C has

sparsity at most -, Sy

A restriction of a circuit means a substitution
of field constantsto some variablesin thecircuit. We
are now ready to precisely state the reduction in step
1 of the proof outlinein Section I1.
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Lemma 3 : (Reduction to low-bottom-support depth
‘ . There exists a restriction o of circuit
C that convertsit into a depth four multi-r-ic circuit

of 7-bottom-support computing F,(y), where
T =20-4/42¢ andy isan element of (E)

Proof of the abovelemmaisgiven at the end of
the section. Let o(C) denotethe circuit resulting from
applying o on C. o(C) has m-bottom-support (due to

the lemmaabove). Also, r < (NlogN)?? = 0(-%;) (as

Iog&

d=©(N)), and d=d = 0.97N, < 0.9]y|]. Hence
thelemmabel ow, which formalizes step 2 of the proof
outlinein Section I1, isapplicable on o(C).

Lemma 4 : (Lower bound for low-bottom-support
depth four circuits). Let y be a set of variables and

let d < 0.9]y| and =.7; be positive integers.

Then every depth four multi-r-ic circuit having 7-

bottom-support and computing F,(y), where

T =20-y%¢ must have top fanin at least
d

2% )105¢ ¢ g,
vl

Proof of thelemmais given in the next section.
Lemma4 impliesthat o(C) has top fanin at |east

i 1 .| .d_
[IL&][:LOgTr] :[2020_[&09&]10 d ](20_105 rlogdj

YT r ) e

> (0.0210-(N log N)O'l)(mios.\/gj

where Equation (5) follows from the fact that d >
0.02N (since d > 0.51N), r < (NlogN)%®, and

[y|< OS2 Thus, Ctoo must havetop fanin (and hence

6The same lower bound holds for arange of i and r sat- isfying
1000log ly| < ot < d /5000, provided the parameter k used in the
construction of F(y) is adjusted suitably.

N log N
size) _ 29( ?g ) O
Proof of Lemma 3

The proof usesthe probabilistic method. We begin by
describing the sample space of restrictions.

Restriction o. Given a subset Rex, let oy
denotethe foll owing restriction (substitution) on some
variablesin xuuuv. If [Rep then

1. assignOtovariablesinx\ R,

2. assignOtou’s where x; ¢ Rand assign 1tothe
other u’s, and

3. assignOto vj’s where j > 0.97N, - [R| and 1 to
the other v/'s.

Otherwise, assign all variables 0. We note that
if (and only if) |R| € p then og(H) = F(R). To
elaborate, after Step 2 above, termsinH corresponding
to F.(y) vanish for every proper supersety O R.
Similarly, after Step 3, termsin H corresponding to
F.(y) vanish for every proper subsety C R.

Random restriction of C. Recall that C
computes H(x, u, v). Consider forming the set R C x
randomly asfollows: Independently, with probability
0.96 pick every x-variable and includeit in R. Now,
to prove Lemma 3 it suffices to show that

Pr[ox(C) has T-bottom-support and

X
computes F,(y) for some ¥ € ( 0 j] >0.

Equivaently, by union bound, it sufficesto show
that Pr[E,] + Pr[E)], where E, is the event that
o&(C) hasbottom support greater than  and E, isthe

event that forevery y € (E)(), o(C) does not compute
F ().

Let (C) denotethe set of monomialscomputed

at the bottom multiplication gatesof C. (Thus |(C>| is
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at most the sparsity of C). For amonomia p, let
denote the set of variables appearing in i.. Then

PrR[El]
<pr[Jo. (1) € (0.(C))st|u|>7]

<pr[ne (C)stlunx|>T and

o (w)#0]
<|(c)[-0.96°  (fromunion bound)
< 2,[/Me . 0,967 [t
B Sk (as d > 0.029N)

To upper bound Pr[E,], we note that E, is
equivalent to the event |R|& p . Hence

Pro[E,] = Pr [[Riep |

2
1[0-01j 0.96N

< ze 31096/ 202 ,

by noting that E[|R]] = 0.96N, = %% and applying
Chernoff bound. Clearly, Pr[E,] + Pr[E)] <1, as
required. O

V. Proving Lemma

A depth four multi-r-ic circuit I" with 7-bottom-support
isof thefollowing form:

=T +T,+..+T,
T=Q,'Q,.-Q,Vie[s], (©)

where, for every i € [s] and every j € [m], Q,.j €
F[y] isapolynomial such that

1. everymonomial init containsat most r variables
(dueto T-bottom-support), and

m
2. foreveryxey, Zdeng” <r

(dueto multi-r-icity).

Proof of Lemma 4. Suppose that I" computes
F.(y) . Then our task is to show that the top fanin s
ishigh.

Suppose that we estimate an upper bound U =
U(k,7) on SP,(T), for every i € [s]. Then
Proposition 2 impliesthat

SP_ (I <sU.
Suppose also that we find a lower bound L =
L(k,¢) on SP, (F,), perhaps by fixing parameters

k,¢ . Then, sinceI" computes F_, it follows that
L <SP, (F,(y))=SP, (I <sU

=s>L/U.

To estimate U, we make use of the lemma
bel ow.

Lemma 5. (‘Low’ SP measure for circuits).
For any i € [s] and positive integers k, 7 where k
<2yJr+ 1.

3lyl/t |y |+kor+2¢
(I < .
P i)‘( k M Iyl )

Proof of thelemmais at the end of this section.
Let € = 0.0055. We fix

K= ed _ 11 d 51 @
2Irr 840000\ rlogd

,_ 0006d-ly| _

(11 /4001
In(yk )

and

o ®)

For such 7, it can be shown that ¢ > 400. |y|,
fromwhich followsaninequality werequire shortly:

blrr 2
1+0 " 11

(©)

To estimate L we use the following lemma:
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Lemma 6. (‘High’ SP measure for F_ ). For
integers k, ¢ fixed as above,

1 |y|/4001) (|y|+£j
(y)>=- . )
SRRz ( k M

In the next section we give the description of
F.(y) and then prove Lemma6.

From Lemmas 5 and 6,

e ()

(3_|y|/1 ) ((\y\+krr+/i))
k) vl

1(|y|/4wl)W
R

S2

2
(3.|Z|/17 ) (|y| +ker+7)..A+ker)+7)
[yl

1 .(\yv;ool)

vl
.(1+ k”j
1+7
1 (\y\/;lOOl)

S AL

- T r

(3-M/T ) eﬂ-M (from (1))
k .

2

N

3yl
k

1 (\y\/4001)
17k
2 =
0.006dJy| krr |yl
(S.M/‘r) Iyj+¢ ‘0006d" 1+¢
k -e

},(\yv;ool)

2
ker |yl
(3-\{(\” ) (\y\/sml)oooed i,

(from (8))

1_(\yv¢om)

2
(3.\{\/1- ).(y/lfool)&:.fgsa (from (9))

ker

v
N

kt ( |y|

(1—5)
3ely| 400]kj (from (2)

ed

~ 1,i 21-tr
J1|  ed ly|2kr | 2
~ 27 3ely|.21r | 400%d
ed
1 20 \2mr

NP

1( ed 21( T )21
e 21rly| ) "\ 4001
~ ed

)21 cd (T jZO 21.21tr
"21r |y| '\ 4001

d
203 \ieer
z(ﬂJ =
ly|.r

In the rest of this section we prove Lemmab.

N
®-

Proof of Lemma 5. For brevity we drop the
subscript i and rewrite Equation 6 as

T=Q,..Q,.
We begin by observing that deg T < |y|-r, and
that deg Q < v for every j e[m]. Now, by grouping

Qj ’s that have degree less than 7r/2 and multiplying
out, it is possible to ensure that every grouping has
degree between 7r/2 and 7r (except possibly onelast
grouping with degree less than 7r/2). This grouping
operation does not cost us as the lower bound in
Lemma4 is on the top fanin. Therefore, we assume

without loss of generality that for every je[m 1],

degQ; ="r/2.
= degT>(mn 1 r/2
= |ylr=(m-1xr/2

= m<2y/ 1 3yl .
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For the case m < k, we note that the elements
of 97(Q..Q,) Yy~
deg(Q,..Q,,) + (< mwr

are of degree at most

¢ kr (. Hence 3,

(Q..Q,) < (‘y‘+k"'r”) trivially proving the bound. For
the case k < m, we use the claim below.

Claim 7. If k< mthen

(. Q)

jelm

cspang

U (yskr r H Qj )

i) eh
Proof. Weinduct onk. Thecasek = Oistrivial.

Supposethat theclaimistruefor k =k 1. Toprove
the case for k, we consider the element

YlyZ Yk [ l_[ QJ - QJ

le j [m]

b= 8)’1 Y2Ya- Yk [ UIQJ
jelm

U ) (yskrrHQJ ,

Ae([ ) jeA

from the inductive hypothesis. Let Qey=®’ be a
polynomial. Then fromthe product rule,

ay1 QI—IQI
jeA
= (aylé]]_[Q‘. +(j' - ( lej ] QI
jed jeA i-A
i=]
ESpanF U <ktr HQ“
Be - 1) i<B

as deg Qj < 7r for every j. Hence

b e span

U U y* I

Aei) Bl ) <8

U yskrr HQJ 0

AE [m jeA

=Spang

From the claim aboveit follows that

At
je[m

gspan': U ( <ktr+/ HQJJ

AE([ g() jeA

Qj

Jelml

ﬁSPk’é[

(m

<\ [

g(3|y|/t .(|y|+!nr /
k ¥

<ktr+¢

as m<3ly|/t. O

V1. Constructing F;(y) and Proving Lemma 6

This section is devoted to constructing the hard
polynomial F = F; mentioned in step 3 of the proof
outlinein Section Il and showingthat it hasahigh SP
measure. In Section 1V we mentioned two properties
F;(y) would have. The claim below (which is
essentially taken from (Chillaraand M ukhopadhyay,
2014) with suitabl e adjustments) makes them precise
and shows how they ensure ahigh SP measurefor F,

something that Lemma6 claims. Let D = (‘y‘/ﬁml)-

Claim 8. Suppose a=de(y) contains at least

(‘y‘/ﬁml) monomias (asindividua & ements) such that
they all are of the same degree and have pairwise

distance at least §- 0.006d. Then SPM(F(])

- (5)
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Proof. Let i,,...,, bethe monomialspresentin
07 F;(y), of degree d, (say) each, and pairwise

distanceat least §. Then from theinclusion-exclusion
principle

y=" {1} aE[D]‘

)

I<a<b<D

)N )|

(10)

Clearly ‘yg.ua = (‘y“yf). Next, let us

estimate an upper bound on the size of the set
OV M) N Y™ 1) = 1o (sAY). It is given that the

elements of |, are of degree at most d,+/ and

that the LCM(,, 1) is of degree at least d, + 6.
Hence

|/ LCM (1 1)

Ia,b =

<dy+/—(dy+8)

< ly=t

Z(M+|j|_8)'

= 3 |0 N )

I<a<b<D

= ¥

1=u<b D

SD_2(|y|+£—8)
20yl
(|y|+€) (1+0)

2 ly[!

(y|+¢-8)..a+¢-3)
o (y]+0.@+0)

2 Iyl
5" Hopte)
2.1yl ly|+¢

(from (1))

I a,b

D (|y|+¢
o |y| (from (8)).

Plugging the boundsin Equation (10) we get

|
ot 2o
[ ) 2 1yl
1 (|y|/4001j (|y|+€}
20 «k ly| )

by plugging the value fort D. Now Y= {H}aqo;,

beinig a set of monomials, is linearly independent.

Hence SR (F;) == (\y\/4001)(\ﬁ/+‘/f)_ a

Description of F4(y)

We show an explicit construction of same degree
: [y fip, With large pariwise distance,
usmg y-variables. Let z be a subset of y, of size

B d—k‘4000<4000 |
0.9 4001 4001

y|, as d<09|y|. Note

n
that n=€ (N). Wepartitionzinto clogn Mo (say)

disjoint subsets of size ¢ log n each and call them
ZW ie[n,]. Here cis aconstant in [1000, 2000],
chosenin such away that n,isaprime number. Now,
we apply the following claim, whose proof is
essentially awell known probabilistic argument (with
an associated greedy agorithm) for existence of codes
with good distance (akin to the Gilbert-Varshamov
bound (Gilbert, 1952; Varshamov, 1957)). The proof
isgiven in the next subsection.

Claim 9. For every i €[n,], thereisaset M® of n
multilinear monomials (in Z0 variables) each of degree

09@ | d pairwise dist at least
40000 0og n and pairwise distance

0.007c log n. Furthermore, M) can be generated in
poly(n) time.
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Thus MO has at least n > n, monomials. Let us

. . (i 0)
identify n,"”,...,

n, many monimialsof MO, Let K beaprimefield of
sizen,. Elementsof K will bedenotedwith 1,2,3...,n,,.

Finally, we define 1, where be[D], as the b-th

element of thefollowing set that is ordered according
to lexicographic ordering of the coefficient vectors of
thedefining univariate polynomials.

def i
L= {H “r(l()w}

with the (Iexicographically first

heK[t].
degh=0.1n,, (]1)
his monic

ie[ny]

For example, the first element of L isthe one
corresponding to the monic, degree-0.1n, univariate

polynomial he[K(t)] whose coefficient vector is
lexicographically the smallest. At the end of this

sectionweshow that indeed |L| > D (sothedefinition

above, which is inspired by Reed-Solomon codes,
makes sense). Observe, 1;’s multilinear and of degree

d-k.
Defining F;(y). The construction uses the idea of

‘code composition’ that ensures F;(y) isaVNP-
polynomial (see Subsectioniii). Fromy\z onecanfrom

(‘yl\f‘ ) = D many multilinear monomials of degreek,

as |y\z|>|y|/4001. Let us call these monomials
V; <V, <...<V, underlexicographic ordering. Then

wedefine F;(y) asfollows:

F; (Y)g 2 HpVp- (12
b=1

Clearly F;(y) is multilinear and all its

monomials are of degree §. Since
9, (MVo) My, 07 (F5(y)) contains p,’s as
required by Claim 8. The other requirement, namely

that F; -monomials have aminimum pairwise distance

of 0.006d=i, is also satisfied: Consider two

monomials Mo and i, where bz a. It sufficesto

aya’
show that |u,\p,|=i. Indeed, we have

i s 0)
My = H ﬂ()i) and Ha il_l_n[] 9()” for two different
ie[ny] c

monic univariate polynomiala h,g € K[t] of degree
0.1n,. If Ristheset of at most 0.1n, rootsof h—gin
[Nyl then clearly h(i) = g(i) for i e[n,]\ R Hence
from Claim 9 we have [nf,\ | 0.007clogn,

for i e[n,]\ R AsM® and M¥ are variable-disjoint

for i # j, we have

|Ub\l1a|
=2ty Sl
ieny]
= 3 | Y )
ieln\R

>(n, —0.1n,).(0.007clogn)

> 0.006n

> 0.006d,

wherethelast step followsfrom the expression for n
and noting therein that k = o(d) (from (7)).

Verifying that |L|> D. The nonzero pairwise

distance implies that |L|=[h:heK[t],

degh=0.1n,, hismonic}|, which is at |east
K™ =nd.  Hence log|L|> 0.1, logn,

n ~
0.1.2—C= €(d) (for large enough n). On the other

hand,

k
logD = Iog(‘y"ﬁ‘m) <log [—4‘3('%'}(]
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ely|
4001k’

[ d .
k=0£ m] thuslog D=O(\/a) asboth ly|and

d are ©(N), proving |L| = D.

klog

fromBound (2). But from Equation (7),

Proof of Lemma6. F;(y) isin VNP (seelast

Subsection) and meets the conditions required by
Claim 8, whichimpliestheresult. O

A Greedy Algorithm

4001

i i £ =09.——
Proof of claim 9. For brevity, let € 2000 <

0.91. In Algorithm 1 we outline a greedy way to
congtruct the required monomials. Clearly, Algorithm
1runsin poly(n) time, and the output monomialshave
the required degree and distance. It remains to show
thatas‘M(')‘c n, thereissome j > j suchthat ©;

can be included in p®  We use the probabilistic
method for this purpose, as bel ow.

Algorithm 1: A greedy aagorithmto generate distant
monomias

The variables zM
The set of monomials M®

I nput
Output :

1 Letay, ay ..., a;, where t=(% ), be
multilinear monomials of degree €clogn, in

lexicographical order.
2 MO:=¢
3 ji=1
4 |whileMO|<nandj<tdo
5 if |oy\ 7] > 0.007c log nfor al 1 € MO then
6 IMO=MO Ufa }
7 end
8 j=j+1l
9 lend

10 return M®

Consider picking every variableindependently

with probability ﬁ <1 and multiplying the picked

variables to form a monomial p (say). Then

g
Eldeg pl= @.CIOQ N. From Chernoff bound,

€
Prid <0.99.—.clogn
[ K 0.99 g }

0012 ¢
~————.clogn
<e 3 09

< e—0.00003clog n

=e, (sy).

L et  be some fixed monomial from M. Then

E[fn\u]

€clogn &
= 1-—
iz'l ( 0.99j

=€. - clogn.
0.99

Thus,
€
P \ 0.1(.[1-—— |.cl
{[n W< (s( Ongg)cogn)}

0.92 { € ]
—g|1- .clogn
<e 3 0.99 '

= Pr[jn \ /< 0.007clogn |
< e—0.0ZZcIogn ,

from Chernoff bound. From union bound, the
probability that there is a monomial < pm @ with

|A(v, )| < 0.007clogn isat most

‘M (i)‘ e—0.00Z.cIogn
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< ne—0.022clog n

~1.001clogn , 0.022clogn

<e e

—e 0.021clogn

=e, (say).

Thus, 1 has degree at least eclogn and distance
v\ at least 0.007clogn for all ve M® with

probability at least l-e-e 1 g 0:00003.clogn

— g 002iclogn o 1 (for nlargeenough). In other words,

there exists amultilinear monomial . with distance
(frommonomialsof M® asleast 0.0071og nand degree

at least €.clogn. However we want the degree to be

exactly €.clogn. We can chop off a few variables
from U to ensure that. Such a chopping results in

|u\v|=|v\p| 0.007clogn, as desired. O

VNP Membership of F; and H

Proof of F;(y)€VNP. We recall Equation (12).
According to Valiant’s criterion, it suffices to give a
poly(Jy|)-time procedure that checks if a given
monomial equls y, v, for some beD. (The co-
efficientis1if it doesand O otherwise.) Theprocedure
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