Review Article

Calendula officinalis - An Important Medicinal Plant with Potential Biological Properties

NELOFER JAN¹, KHURSHID IQBAL ANDRABI² and RIFFAT JOHN*,¹

¹Plant Molecular Biology Lab., Department of Botany, University of Kashmir, Srinagar 190 006, India ²Department of Biotechnology, University of Kashmir, Srinagar 190 006, India

(Received on 18 April 2017; Revised on 08 July 2017; Accepted on 01 August 2017)

Calendula officinalis L. (Marigold) is globally known for its medicinal importance containing various phyto-chemicals including carbohydrates, amino acids, lipids, fatty acids, carotenoids, terpenoids, flavonoids, quinones, coumarins and other constituents, showing some important biological activities like wound healing, immuno-stimulant, spasmogenic and spasmolytic, hepatoprotective, genotoxic and antigenotoxic, anti-amylase, anti-inflammatory, anti-oedematous, anti-bacterial and anti-fungal, antioxidant, antidiabetic, anti-HIV and anti-cancerous, nephron-protective, prevention of oropharyngeal mucositis, hypoglycemic and gastroprotective activities with no toxic effect .In this review, a detailed account of different phytochemicals and their medicinal properties of *C. officinalis* have been addressed.

Keywords: Calendula officinalis; Asteraceae; Marigold; Phytochemicals

Introduction

In India, over 6,000 plants are used in herbal, folk and traditional medicine. Approximately, amongst1500 identified medicinal plants 500 are commonly in use (Chidambaram et al., 2014). Calendula officinalis L. (pot marigold) is one of the commonly used medicinal plantsin India, China, Europe and US (Muley et al., 2009). Calendula was known as "gold's" in old English was associated with Virgin Mary and Queen Mary, hence the name marigold (Grieve 1931; Kemper 1999; Mills 1991). The name of this plant comes from a Latin word 'Calend' meaning the first day of each month, because of the long flowering period of plant. As flowers move in the direction of the sun's radiation, it has become an astronomical sun sign "Leo" (Dinda and Craker, 1998). Calendula is an annual herb growing about 80 cm tall, having corymbosely branched stem; a long tap root with numerous secondary roots; hispid, acute, oblanceolate, alternate and sessile leaves; flower head inflorescence (surrounded by two rows of hairy bracts). The plant has yellow to orange ûowers with female ray ûorets and hermaphrodite, tridentate, tubular, disc florets; and

curved, sickle-shaped and ringed achenes (Bisset, 1994) (Fig. 1).

The plant species has been reported to contain a variety of phyto-chemicals, including carbohydrates, phenolic compounds, lipids, steroids, tocopherols, terpenoids, quinones and carotenoids (Kishimoto *et al.*, 2005; Re *et al.*, 2009; Shahrbabaki *et al.*, 2013; Wojciak-Kosior *et al.*, 2003) with different health benefits (Miliauskas *et al.*, 2004; Muley *et al.*, 2009; Vodnar, 2012). The major active constituents of plant include triterpendiol esters, saponins, and flavonoids including rutin and hyperoside. The orange flower contains a high content of carotenoids including auroxanthin and flavoxanthin (Braun and Cohen, 2005; Neukiron *et al.*, 2004; Roopashree *et al.*, 2008).

The pot marigold extracts possess a wide range of pharmacological effects (Pintea *et al.*, 2003) and are used as antiseptic, stimulant, diaphoretic, antispasmodic and anti-pyretic agents (Kirtikar and Basu, 1993; Weiner, 1990). The flower extracts of the plant have anti-viral effects on HIV (Kalvatchev *et al.*, 1997). *In-vitro, Calendula officinalis* (CO) plant

^{*}Author for Correspondence: E-mail: riffatminhaj@kashmiruniversity.ac.in; riffat_iit@yahoo.com

Fig. 1: A. Calendula officinalis (young leaflet stage) B. Calendula officinalis (young flower bud) C. Calendula officinalis (full flowering stage)

extracts show anti-cancerous activity on various tumor cell lines derived from leukemias, fibrosacomas, melanomas, breast, cervix, prostate, pancreas and lung (Medina *et al.*, 2006). It has also been internally used for the treatment of gastritis, colitis and bleeding of duodenal ulcers (Bone *et al.*, 2003). Due to significant biological activity of *C. officinalis* and its constituents it is imperative that the plant be given attention and developed as a medicine.

Important Phyto-chemicals

Various phyto-chemical studies have revealed the presence of different chemical compounds including carbohydrates, amino acids, lipids, carotenoids, terpenoids, flavonoids, volatile oil, quinines, coumarins and other constituents (Tables 1 and 2).

Carbohydrates

The water soluble polysaccharides of *C. officinalis* inflorescence contain 9.25 % moisture, 25.77 % acidic sugar, 29.25 % ash, 31.25 % reducing sugars and 84.58 % pectic substances and various monosaccharides including glucose, arabinose, rhamnose, xylose, galactose and galacturonic acid (Lim, 2013). The ethanolic extract of *C. officinalis* inflorescence was reported to contain monosacccharides along with polysaccharides, PS-I,-II, -III with $(1\rightarrow 3)$ - β -Dgalactam backbone and a side chain at C-6 consisting of α -L-rhamnan- $(1\rightarrow 3)$ -araban and α -araban- $(1\rightarrow 3)$ -araban form (Varlijen, 1989; Wanger *et al.*, 1985).

Amino Acids

The *C. officinalis* flower extract showed the presence of 15 free amino acids including proline, phenylalanine, histidine, lysine, leucine, serine, alanine, valine, arginine, tyrosine, aspargine, threonine, glutamate, methionine and aspartate and amino acid content, being highest in the flower (4.5%) (Abajova, 1994).

Lipids and Fatty Acids

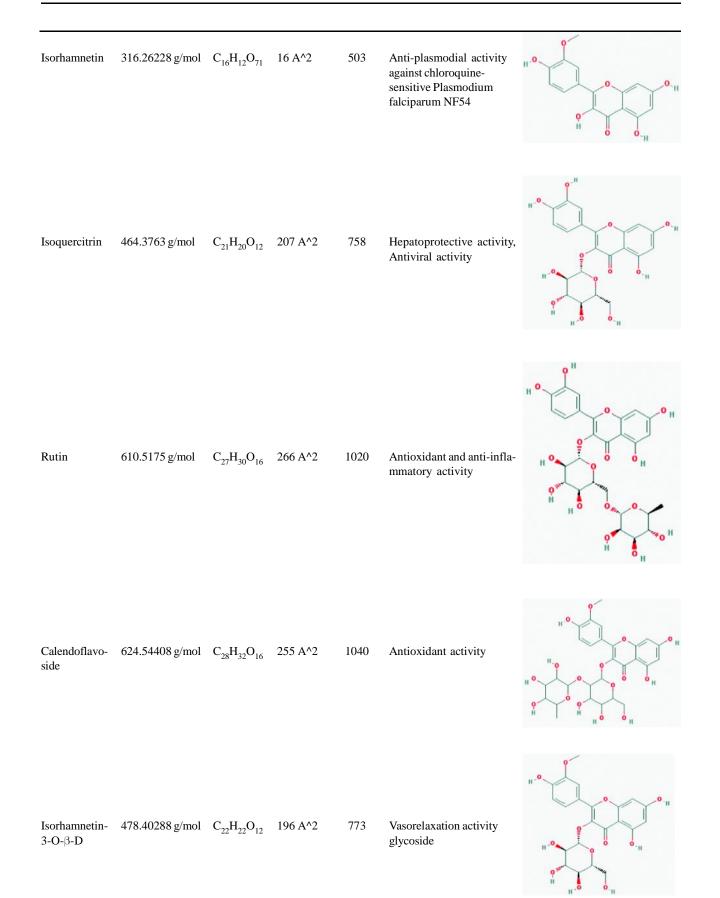

The fatty acids present in the C. officinalis flowers

Table 1: Active components present in different plant parts of C. officinalis

Plant part	Active components	Constituents	Reference
Flower	Terpenoids	Lupeol, Ψ -taraxasterol	(Zittwel-Eglseer et al., 1997; Wilkomirski, 1985)
		Erythrodiol	(Wojciechowski et al., 1972)
		Calenduloside	(Vecherko et al., 1975)
		Calendulaglycoside A, Calendulaglycoside B	(Ukiya <i>et al.</i> , 2006)
		Cornulacic acid acetate	(Naved et al., 2005)
Flower	Flavonoids	Quercetin, Isorhamnetin	(Kurkin and Sharova, 2007)
		Isoquercitrin, rutin, calendoflavoside	(Ukiya <i>et al.</i> , 2006)
		Isorhamnetin-3-O-β-D glycoside, narcissin	(Vidal-Ollivier et al., 1989)
Leaves	Quinones	Phylloquinone, α -tocopherol, ubiquinone, plastoquinone	(Janiszowka et al., 1976)
Flower	Coumarin	esculetin,scopoletin,umbelliferone	(Kerkach et al., 1986)
Flower	Volatile oil	Cubenol, α -cadinol, oplopanonec methyllinoleate	(Nicoletta et al., 2003)
		Sabinene, limonene, α -pinene, <i>p</i> -cymene, nonanal, carvacrol, geraniol, nerolidol, <i>t</i> -muurolol and palustron	(Khalid and J. A. Teixeira da Silva, 2012)
Root	Terpenoid	Calenduloside B	Iatsyno et al., 1978

Compound	Physica	l and chemic	al properties		Pharmacological properties	Chemical Structure
	Molecular weight	Molecular formula	Topological polar surface area	Com- plexity		
Lupeol	426.7174 g/mol	C ₃₀ H ₅₀ O	20.2 A^2	766	Anti-Inflammatory activity	H.O.
Ψ-taraxasterol	426.7174 g/mol	C ₃₀ H ₅₀ O	20.2 A^2	779	Antitubercular activity	H OF H
Erythrodiol	442.7168 g/mol	C ₃₀ H ₅₀ O	240.5 A^2	810	Anti-viral and Anti- Inflammatory activity	H O H
Calenduloside	794.96504 g/mol	$C_{42}H_{66}O_{14}$	233 A^2	1560	Cytotoxicity against , melanoma leukemia and colon cancer	
Calendulagly- coside A	1119.24624 g/mol	$C_{54}H_{86}O_{24}$	391 A^2	2200	Anti-Inflammatory activity	
Calendulagly- coside B	957.10564 g/mol	$C_{48}H_{76}O_{19}$	312 A^2	1880	Anti-Inflammatory activity	
Quercetin	302.2357 g/mol	$C_{15}H_{10}O_{71}$	27 A^2	488	Anti-proliferative, anti-infla mmatory and anti-allergy activity	

Table 2: Chemical structure, physical, chemical and	pharmacological properties of various components present in C. officinalis

Narcissin	624.54408 g/mol	C ₂₈ H ₃₂ O ₁₆	255 A^2	1040	Cytotoxic activity against the human chronic myelo- genous leukemia	
Phylloquinone	450.69574 g/mol	$C_{31}H_{46}O_{23}$	4.1 A^2	696	For control of massive hemorrhage and in other coagulation disorders	
α -tocopherol	430.7061 g/mol	$C_{29}H_{50}O_{22}$	9.5 A^2	503	Anticoagulant, neuropro- tective, antiviral, immunomodulatory activities	"°\$
Ubiquinone	250.29032 g/mol	C ₁₄ H ₁₈ O ₄₅	2.6 A^2	474	Termiticidal activity agains Coptotermes formosanus	t of too
Plastoquinone	749.2011 g/mol	C ₅₃ H ₈₀ O ₂₃	4.1 A^2	1590	Antimicrobial and antiparasitic activity	A A A A A A A A A A A A A A A A A A A
Eesculetin	178.14154 g/mol	C ₉ H ₆ O ₄₆	6.8 A^2	248	Antioxidant activity	

Scopoletin	192.16812 g/mol	$C_{10}H_8O_{45}$	5.8 A^2	261	Cytotoxicity against human HT1080 cells and human LoVo cells	O O H
Umbelliferone	162.14214 g/mol	$C_9H_6O_{34}$	6.5 A^2	222	Antimicrobial activity	H ₀ 000
Cubenol	222.36634 g/mol	$C_{15}H_{26}O_2$	0.2 A^2	292	Anti-inflammatory activity	
α-cadinol	222.36634 g/mol	C ₁₅ H ₂₆ O ₂	0.2 A^2	292	Antiviral activity against SARS coronavirus	H-O
Oplopanonec	238.36574 g/mol	C ₁₅ H ₂₆ O ₃	37.3 A^2	310	Anti-inflammatory	H-O
Methyllinoleat	e 294.47206 g/mol	C ₁₉ H ₃₄ O ₂	26.3 A^2	279	Cytotoxicity against isogenic chicken DT40 cell lines	
Sabinene	136.23404 g/mol	C ₁₀ H ₁₆ O	0 A^2	179	Anticancerous activity	

Limonene	136.23404 g/mol	C ₁₀ H ₁₆ O	0 A^2	163	Antioxidant activity	
α-pinene	136.23404 g/mol	C ₁₀ H ₁₆ O	0 A^2	186	Anti-inflammatory, Anticancerous	H
<i>p-</i> cymene	134.21816 g/mol	$C_{10}H_{14}O_2$	0 A^2	86.2	Anti-inflammatory activity	
Nonanal	142.23862 g/mol	C ₉ H ₁₈ O	17.1 A^2	69.1	Anti-micribial activity	0 H
Carvacrol	150.21756 g/mol	C ₁₀ H ₁₄ O	0.2 A^2	120	Agonist activity at human TRPA1 channel expressed in HEK293 cells	H
Geraniol	154.24932 g/mol	C ₁₀ H ₁₈ O	20.2 A^2	150	Anti-cancerous activity	H H H
Nerolidol	222.36634 g/mol	C ₁₅ H ₂₆ O	20.2 A^2	269	Anti-inflammatory activity	н.
t-muurolol	222.36634 g/mol	C ₁₅ H ₂₆ O	20.2 A^2	292	Antifungal activity	H-O
Palustron	309.44694 g/mol	C ₁₇ H ₃₁ N ₃ O	₂ 64.6 A^2	373	Anti-bacterial activity	H N H AN H

are myristic acid, lauric acid, stearic acid, palmitic acid, oleic acid, linoleic acid and linolenic acid. The lipids present in the seeds of *C. officinalis* are phospholipids, glycolipids and neutral lipids. Seeds also contain 9-hydroxy-18:2(*trans-9*, *cis-11*) aciddimorphecolic acid and 18:3 conjugated trienic (*trans-*8, *trans-*10, *cis-*12) acid (Vlchenko, 1998; Wilkomirski and Kasprzyk, 1979). The seed oil contains D-(+)-9hydroxy-10, 12-octadecadienoic acid (oxygenated fatty acid) (Badami and Morris, 1965).

Nineteen fatty acids were identified in the eleven genotypes of Calendula seed oils with calendic acid and linoleic acid being the predominant fatty acids (51.47%-57.63% and 28.5-31.9%), followed by oleic acid (4.44-6.25%) and palmitic acid (3.86-4.55%) (Dulf et al., 2013). The fatty acids present in trace amounts include lauric, stearic, myristic, palmitoleic, á-linolenic, β-calendic, arachidic, elaidic, gondoic, behenic, linoelaidicic, pentadecanoic, cis-7hexadecenoic and margaric acids, and a very low amount of hydroxy-fattyacid, namely 9-hydroxy-trans-10, cis-12-octadecadienic acid (9-HODE) (Dulf et al., 2013). Calendic acid is a conjugated trienoic fatty acid containing conjugated trans- Δ^8 -, trans- Δ^{10} -, and cis- Δ^{12} -double bonds (Cahoon *et al.*, 2001). Conjugated trans- Δ^{8} - and trans- Δ^{10} -double bonds of calendic acid are formed by the modification of cis- Δ^{12} -double bond of linoleicacid (Crombie *et al.*, 1984). CoFADX-1 and CoFADX-2 (cDNAs for two closely related FAD2-like enzymes) are responsible for the formation of conjugated trans- Δ^8 -andtrans- Δ^{10} -double bonds of calendic acid (Cahoon *et al.*, 2001).

During the seed maturation period, the concentration of calendic acid has been shown to increase steadily and sharply with a decrease in linoleic and oleic acids (Pintea *et al.*, 2008) due to the presence of a specific conjugase in *calendula* seeds which converts linoleic acid into calendic acid (Cahoon *et al.*, 2006; Fritsche *et al.*, 1999).

Carotenoids

The inflorescence of *C. officinalis* has abundant amount of carotenoids that give flowers their yelloworange color and the color shade depends on pigment content and pigment profile. Yellow flower petals of *Calendula* contain 19 carotenoids and orange flower contains10 unique carotenoids. These 10 carotenoids have UV-visible absorption maxima at a wavelength Nelofer Jan et al.

longer than that of flavoxanthin, and provide orange color to the flower petals (Khalid and Teixeira da Silva, 2012). Six carotenoids (5Z) having *cis* form at C-5 may be isomerized at C-5 enzymatically in a pathway deviating from the main pathway of carotenoid biosynthesis. Some of the carotenoids which were recently identified include - (5Z, 9Z)-lycopene, (5Z)-g-lycopene, (5Z, 9Z, 5'Z, 9'Z)-lycopene and (5Z, 9Z)-rubixanthin. The carotenoid identified as a synthesized compound is (5Z, 9Z, 5'Z)-lycopene (2) (Kishimoto *et al.*, 2005).

The main carotenoids present in the petals and pollens are flavoxanthin, luteoxanthin, auroxanthin, 9Zantheraxanthin, neoxanthin, lutein and its Z-isomers, mutatoxanthin, violaxanthin, 9Z-neoxanthin, 9Zviolaxanthin, α - and β -carotene, and α - and β cryptoxanthin with higher quantity of lycopene in petals (Bako et al., 2002). The total carotenoid present in the petals and pollens is 7.71% and 1.61%, repectively. Lutein, β -carotene, neoxanthin, 9Z-neoxanthin, Zisomers of lutein, antheraxanthin and violaxanthin, are the main carotenoids detected in the leaf and stem (Bako et al., 2002). The total carotenoid present in the leaf and stem is 0.85% and 0.18%, respectively (Bako et al., 2002; Goodwin, 1954). The carotenoid composition of herbal tea (Calendula flos) is less because of drying of plant material and only antheraxanthin and 9Z-antheraxanthin in smaller amounts were detected (Bako et al., 2002). The ratio of Z-isomers of lutein and β -carotene increased with drying of plant material (Bako et al., 2002). Zeaxanthin or lutein is necessary for photo-protection and also leads to the inhibition of lipid peroxidation (Niyogi et al., 1997).

HPLC analysis of carotenoids in four varieties of *Calendula* ('Bonbon Abricot', 'Double Esterel Jaune', 'Radio Extra Selected' and 'Double Esterel Orange') showed that all varieties contain common pigments and the difference is only in ratio of individual pigments (Pintea *et al.*, 2003) (Table 3). Orange varieties are rich in carotenoids and contain both hydrocarbons and oxygenated derivatives (Pintea *et al.*, 2003). Moreover, orange color intensity of *Calendula* is determined by the amount of γ -carotene, â-carotene, lycopene and rubixanthin as these pigments are responsible for the orange or even red color of vegetal tissues (Pintea *et al.*, 2003) (Table 4).

777

Table 3:	Total	carotenoid	content	in	Calendula	officinalis
Lvariet	ies (Pi	ntea <i>et al.</i> , 2	2003)			

Variety	Colour	Carotenoid amount (mg/100g fresh flowers)
Bonbon Abricot	Yellow-orange	48.2
Double Esterel Jaune	Lemon yellow	97.0
Radio Extra Selected	Orange	111.8
Double Esterel Orange	Dark orange	276.0

calendulaglycoside B 6'-*O*-*n*-butyl ester, calendulaglycoside C 6'-*O*-*n*-butyl ester, calendula-glycoside C 6'-*O*-*n*-methyl ester, calendulo-side F 6'-*O*-*n*-butyl ester, calenduloside G 6'-*O*-*n*-methyl ester (Ukiya *et al.*, 2006), faradiol-3-*O*-myristate, faradiol-3-*O*palmitate, faradiol-3-*O*-laurate (Eitterl-Eglseer *et al.*, 2001), glucuronides (mainly present in green parts and flowers) and glucosides of oleanolic acid (mainly present in growing and senescing plants) (Ruszkowski *et al.*, 2003; Wojciechowski *et al.*, 1971).

Table 4: Ca	arotenoid composition	of inflorescences of	Calendula	officinalis L	varieties	(Pintea et al., 2003))
-------------	-----------------------	----------------------	-----------	---------------	-----------	-----------------------	---

Pigment	No. of pigment on HPLC chromatogram	Double esterel orange %	Radio extra selected %	Bonbon abricot %	Double esterel jaune %
Neoxanthin	1	0.92	1.71	2.84	1.74
Luteoxanthin+Auro	8	8.9	11.3	15.43	18.97
Antheraxanthin	9	2.09	4.31	4.56	6.83
Flavoxanthin	10	14.1	17.4	35.42	42.05
Mutatoxanthin	11	0.38	-	2.17	-
Lactucaxanthin	12	4.49	8.02	-	11.31
Lutein	3	9.18	11.38	8.27	12.29
Zeaxanthin	4	0.11	0.23	-	0.15
Rubixanthin	13,14	14.36	7.27	4.58	-
Lycopene	15	14.03	5	0.57	-
?-carotene	16	12.15	6.15	5.11	-
a-carotene	17	0.98	1.15	1.89	0.2
ß-carotene	7	16.68	17.51	10.31	2.37

Terpenoids

Calendula contains various terpenoids including stigmasterols, sitosterols (Alder and Kasprzyk, 1975), lupeol, Ø-taraxasterol, 3-monoesters of taraxasterol (Wilkomirski, 1985; Zittwel-Eglseer *et al.*, 1997), ursadiol (Sliwowski *et al.*, 1973), diesters of diols (Wilkomirski and Kasprzyk, 1979), brein, erythrodiol (Wojciechowski *et al.*, 1972; Kasprzyk and Wilkomirski, 1973), calenduladiol-3-*O*-myristate, aranidiol-3-*O*-myristate, calenduladiol-3-*O*-palmitate (Neukiron *et al.*, 2004; Ukiya *et al.*, 2006), calenduloside AH (Vecherko *et al.*, 1969, 1971, 1974, 1975), calendulaglycoside A, calendulaglycoside B, calendulaglycoside C, calendulaglycoside A 6'-*O*-*n*-butyl ester, calendulaglycoside A 6'-*O*-*n*-methyl ester,

The major triterpenoid esters present in the flower head of *Calendula* are palmitate, myristate and faradiol 3-*O*-laurate (Hamburge *et al.*, 2003). Triterpene alcohols and triterpene saponins are found in ligulate flowers (Hansel *et al.*, 1992; Issac 1992). Cornulacic acid acetate (new oleanane triterpene ester) was reported from *Calendula* flowers (Naved *et al.*, 2005).

Flavonoids

The *C. officinalis* inflorescence contains various flavonoids including isorhamnetin, quercetin (Kurkin and Sharova 2007), isorhamnetin-3-*O*-β-D-glycoside, isoquercetin, calendoflavoside, narcissi (Vidal-Ollivier *et al.*, 1989), isoquercitrin, rutin, quercetin-3-*O*-rutinoside, quercetin-3-*O*-glucoside, isorhamnetin-3-

O-rutinoside, isorhamnetin-3-*O*-2G-rhamnosyl rutinoside, neohesperidoside, isorhamnetin-3-*O*-neohesperidoside, calendoflavobioside (Ukiya *et al.*, 2006). The flavonoid content depends on the plant variety, time and place of cultivation, and there appears a relationship between floret color and total flavonoid content of *C. officinalis* (Raal and Kirsipuu, 2011).

Volatile Oil and Its Constituents

The flower heads of C. officinalis have been reported to contain volatile oil (VO) consisting of cubenol, α cadinol, γ -cadinene, δ -cadinene, oplopanonec, methyltetradecanoate, methyllinoleate, methylhexanoate, methyloctadecanoate and methyl-9, 12, 15-octadecatrienoate (Nicoletta et al., 2003). The flowers contain minimum VO at pre-flowering stage and maximum at full flowering stage (Okoh et al., 2007). The VO contain a maximum amount of α cadinol, α -cadinene, limonene, t-muurolol and 1,8 cineol with a minimum amount of p-cymene during the post-flowering stage (Okoh et al., 2007). According to Gazim et al. (2007), the main constituents of VO are epi- α -muurolol, α -cadinol, δ cadinene, sesquiterpenols and sesquiterpene hydrocarbons. The VO contains various monoterpenes and sesquiterpenes: sabinene, limonene, α -pinene, β pinene, α -thujene, p-cymene, γ -terpenene, tras- β ocimene, δ -3-carene, 1,8-cineol, nonanal, carvacrol, geraniol, terpene-4-ol, α-terpeneol, 3-cyclohexene-1ol, α -cadinol, bornyl acetate, calarene, aromadendrene, germacrene-D, endobourbonene muurolene, α bourbonene, α -copaene, α -cubebene, α -gurjunene, α -humulene, α -phellandrene, α -cadinene, α -cadinol, β -cubebene, β -caryophyllene, β -saliene, nerolidol, tmuurolol and palustron (Khalid and Teixeira da Silva, 2012).

Quinones and Coumarins

Various quinines have been reported from *C.* officinalis. They include phylloquinone in leaves, α -tocopherol, phylloquinone and ubiquinone in mitochondria, and α -tocopherol, phylloquinone and plastoquinone in chloroplast (Janiszowka 1976). The flower contains coumarins, esculetin, scopoletin and umbelliferone (Kerkach *et al.*, 1986). Coumarin is the parent molecule of warfarin (a clinically useful anticoagulant), which acts as a vitamin K antagonist (Asif 2015). Coumarins act as phytoalexins as they

are produced by plantsfordefense against various pathogens (Berenbaum *et al.*, 1991; Weinmann 1997). Coumarins are leached from the roots of some plants (wild *Avena*) into the soil, to provide defense against various micro-organisms (Asif 2015). Coumarins possess a variety of biological activities including estrogenic, anticoagulant, dermal photo-sensitising, vasodilator, anti-microbial, anti-helminthic, molluscacidal, hypnotic, sedative and analgesic activity (O'kennedy and Thornes, 1997).

Other Constituents

Other constituents of *Calendula* include calendulin (Fliesonner 1985), loliolide (calendin) (Willuhn and Westhaus 1987), *n*-paraffins (Komeo and Hayashi 1971) and some bitter constituent.

Medicinal Properties

The use of plants for treating diseases is as old as the human species. Various pharmacological studies have reported that *C. officinalis* has a broad range of biological activities and some of these can be used for further future development.

Wound Healing Property

While studying the healing activity of Calendula flower extract against thermal burns in rats, it was found that the extract showed significant healing activity by increasing hexosamine and collagenhydroxyproline content with a significant decrease in the level of tissue damage marker enzymes (aspartate transaminase and alkaline phosphatase) and acute phase proteins (orosomycid and heptaglobin). The decline in lipid peroxidation may be due to the antioxidant activity of Calendula (Chandran and Kutton 2008). Daily use of Calendula gel (2%) causes significant healing of wounds due to its antioxidant and antimicrobial activities (Leach, 2008). Calendula may facilitate the wound healing by increasing wound angiogenesis, epithelialization, and nucleoprotein, glycoprotein and collagenmetabolism leading to improvement in local circulation and granulation tissue formation (Leach, 2008). The Calendula treatment was more effective than other medicines and also reduces discomfort during dressing changes. The use of 10% Calendula solution supplemented with 2% Calendula gel for cleaning skin lesions, burn, and venous ulcers reduces the time of healing and also results in a greater number of healed wounds, compared to using of *Calendula* solution alone (Leach, 2008). However, this evidence is weak and requires further investigation. The topical application of *C. officinalis* cream leads to the healing of achilles tendon by increasing the collagen and non-collagen protein concentration as well as by organizing the collagen proteins (Aro *et al.*, 2015).

Immuno-stimulant Activity

C. officinalis polysaccharide (PS) fraction exhibits immuno-stimulant activity. PS-I and PS-II showed 40-57% and 20-30% of phagocytosis, respectively, while PS-III exhibited the highest (54-100%) phagocytosis (Varlijen, 1989; Wagner *et al.*, 1985). Immunostimulant activity was also observed in shrimp (*Fenneropenaeus chinensis*) against *Vibrio harveyi*, when injected with SFPSE i.e., a Sargassum fusiforme polysaccharide extract (Huang *et al.*, 2006). Moreover, thepolysaccharides from *Salicornia herbaceae* show immuno-modulatory activity and are efficiently used against various types of cancers (Im *et al.*, 2006).

Spasmogenic and Spasmolytic Activity

The aqueous/ethanolic plant extract showed spasmogenic activity (Bashir *et al.*, 2006). The aqueous/ethanolic extract of *Calendula* flowers caused relaxation of spontaneous contraction and K⁺ induced contraction of muscles. When the extract was further fractionated with dichloromethane, it inhibited spontaneous contraction. Calcium channel blockade (CCB) was responsible for spasmolytic activity (Bashir *et al.*, 2006). N-type calcium channel blockade prevents sudden cardiac death (Nattel, 2014). N-type calcium channel blockade (NCC) blockade only or along with L-type calcium channel blockade (LCC) blockade can be beneficial in patients with hypertension, cardiovascular and other metabolic diseases (Kuwahara and Kimura, 2015).

Hepatoprotective Activity

Calendula flower hydro-alcoholic extract caused 28.5% reduction in hepatocytolysis of CCl_4 -intoxicated rat liver due to reduction in glutamo-pyruvate-transaminase and glutamo-oxalate-transaminase. For instance, histo-enzymological studies showed steatosis reduction by succinate dehydrogenase,

cytochromoxidase, lactate dehydrogenase and Mg2+ dependent ATPase (Rasu et al., 2005). Calendula flower hot water extract showed anti-hepatoma activity (25-26% inhibition) against five human liver cancer cells: Hep3B, SK-HEP-1, HepG2/C3A, PLC/ PRF/5 and HA22T/VGH (Lin et al., 2002). Moreover, CCl₄intoxicated rats pre-treated with Calendula floral extract afford a protection against CCl₄ induced toxicity and showed an improvement in liver function due to significant anti-oxidant activity and free radical scavenging activity of bioactive metabolites including flavonoids and terpenoids present in Calendula (Maysa et al., 2015). These bioactive metabolites have potent activities for scavenging the hydroxyl radicals (OH) and superoxide radicals (O_2) resulted from CCl₄ metabolites (Maysa *et al.*, 2015).

Genotoxic and Antigen-toxic Activity

The aqueous-ethanolic extract of *Calendula* flowers exhibit a genotoxic effect at high concentration and anti-genotoxic effect at low concentration (Perez-Carreon *et al.*, 2002). During the evaluation involving the measurement of excretory 24h urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and lymphocyte DNA fragmentation in young pigs, propylene glycol extract of *Calendula* was also found to have anti-genotoxic effect (Frankic *et al.*, 2008). The urinary 8-OHdG acts as a biomarker for carcinogenesis and various degenerative diseases, and has been used as a pivotal marker for measuring the endogenous effect of oxidative damage to DNA and as a factor of initiation and promotion of carcinogenesis (Valavanidis *et al.*, 2009).

Anti-inflammatory and Anti-oedematousacitivity

Calenduloside B (trioside of oleinic acid) of *Calendula* roots show sedative and anti-phlogistic activity (Iatsyno *et al.*, 1978). Calenduloglycosides show anti-inflammatory activities against mouse ear edema and calenduloside F 6'-O-n-butyl ester show potent cytotoxicity against melanoma, leukemia and colon cancer (Ukiya *et al.*, 2006).

C. officinalis inflorescence extract showsantiinflammatory activity against the dextran and carrageenan-induced acute paw edema in mice (Preethi *et al.*, 2009). Also a significant increase in the level of pro-inflammatorycytokines like IL-1 β , IL-6, and TNF- α in the sera of LPS (lipopolysaccharide) induced animals has been observed (Preethi et al., 2009). The cytokines-like IL-1, IL-6 and TNF- α act as stimulants in the liver to produce C-reactive protein (CRP) which is increased several folds during acute inflammation. Studies suggest that increased levels of pro-inflammatory cytokines IL-6 and tumor necrosis factor-alpha (TNF- α) play important role not only in the development of kidney ailments (Stenvikel et al., 2005) but also ovarian epithelial cancer (Mark M. Moradi, et al., 2006). Calendula flower methanolic extract inhibits 12-O-tetradecanoyl phorbol-13acetate (TPA) induced inflammation in mice attributed to presence of oleanane-triterpene glycoside in Calendula flower (Ukiya et al., 2006). After elucidating the structure of faradiol-3-myristic acid ester, faradiol-3-palmitic acid ester and taraxasterol, it was found that these three esters/compounds have anti-oedematous activities as shown by inhibition of Croton oil-induced oedema of the mouse ear (Della, 1990; Della, 1994).

Anti-bacterial and Antifungal Activity

Calendula has various anti-bacterial and anti-fungal activities (Rossiter et al., 2006; Tonks et al., 2007) and has been used for the treatment of abrasions, burns, ulcers, skin inflammations, eczema and wounds (Schulz et al., 2004). CO flower extract has an antibacterial activity against various bacteria. In-vitro, the essential oil of flowers inhibited the growth of gram-positive bacteria including Staphylococcus aureus and Bacillus subtilis, and gram-negative bacteria including Pseudomonas aeruginosa and Escherichia coli, showing maximum inhibition for Pseudomonas aeruginosa. Moreover, the reproductive parts of CO show less anti-bacterial activity than the petals (Hamad et al., 2011). The flower decoction and methanolic extract showed antibacterial activity against various facultative aerobic and obligate anaerobic periodontal bacteria including Furobacteriumnucleatum, Porphyromonosgingi valis, Caphocytophagagingivalis, Prevotella spp., Veilonellaparvula, Peptostreptococcus micros, Eikenellacorrodens and Actinomycesodontolyticus (Iauk et al., 2003). The flower volatile oil showed anti-fungal activity against various fungal strains: Candida dubliniensis (ATCC777), Candida krusei (ATCC6258), Candida glabrata (ATCC90030), Candida albicans (ATCC64548), Candida parapsilosis (ATCC22019) and against yeast isolated

from humans: Candida krusei, Candida dubliniensis, Candida guilliermondii, Candida glabrata, Candida albicans, Candida parapsilosis, Candida tropicals, and Rhodotorella spp. (Gazim et al., 2008) (Table 5). Streptococcus aureus was more susceptible to the aqueous extracts than ethanolic, methanolic and petroleum ether extracts of Calendula flower, suggesting the better anti-bacterial activity of aqueous extracts (Roopashree et al., 2008). Calendula leaf, stem, root and flower extracts show anti-microbial activity against various

 Table 5: Anti-fungal activities of the essential oil of flowers
 of Calendula officinalis (Gazim et al., 2008)

Microorga- Origin* nisms		Mean zone of inhibition a (mm)		
	Ċ	Calendulaoil 5 µl/disc	Nystatin20 µg/disc	
C. albicans	ATCC 64548	16	12	
C. albicans	orotracheal tube	11	13	
C. albicans	OC-HIV	26	11	
C. albicans	VVC	18	12	
C. albicans	VVC	15	12	
C. albicans	VVC	15	12	
C. albicans	Urine	27	11	
C. dubliniensis	ATCC 777	24	11	
C. parapsilosis	ATCC 22019	20	12	
C. parapsilosis	Onychomycosis	14	13	
C. parapsilosis	Paronychia	30	11	
C. parapsilosis	Blood	30	11	
C. glabrata	ATCC 90030	15	12	
C. glabrata	Hands colonization	23	11	
C. glabrata	Hands colonization	28	11	
C. tropicalis	Urine	11	13	
C. tropicalis	Granulomatous les	ion 15	12	
C. tropicalis	Urine	21	12	
C. tropicalis	Urine	22	11	
C. guilliermondi	i Hands colonization	25	11	
C. guilliermondi	i Hands colonization	u 24	11	
C. krusei	ATCC 6258	15	12	
Rhodotorulla sp	Hands colonization	30	11	

Except ATCC microorganisms all of others are human clinical isolates OC–HIV: oral candidiasis; VVC: vulvo vaginal candidiasis. Mean of inhibition zone by oil of flowers of CO: Good activity (11-18 mm); high activity (20-27 mm); highest activity (28-30 mm)

human pathogenic microbes: Candida albicans, Candida parapsilosis, Pseudomonas aeruginosa, Escherichia coli, Cogulase (+) Staphylococcus sp., Enterococcus sp. and Cogulase (-) Staphylococcus sp.

Glycosides of oleanolic acid and saponins of *C.* officinalis showed anti-parasitic activity against *Heligmosomoides polygyrus* (Al-Snafi, 2016). The ethanolic and methanolic extract of leaves of *C.* officinalis also showed anti-parasitic activity against *Pheretimaposthuma* (Dorwal, 2012). α -pinene in *C.* officinalis showed anti-Listeria activity against L. monocytogenes (Viuda-Martos *et al.*, 2010). Nerolidol of *C. officinalis* showed anti-malarial activity by inhibiting the parasite to synthesize coenzyme Q in all intraerythrocytic stages (Boyom *et al.*, 2003).

Anti-oxidant Activity

C. officinalis contain various phyto-chemical constituents: alkaloids, carotenoids, flavonoids like quercetin, lupeol, protocatechuic acid, isorhamnetin, etc. and triterpenoids (Matysik et al., 2005). Most of these phyto-chemicals have free radical scavenging activity and also enhance healing of wounds by artificial cross linkage (Kuppast and Nayak 2006). C. officinalis being rich in flavonoids, carotenoids, saccharides, organic acids, lipids and saponosoides show a very effective anti-oxidant activity. Both flavonoids and carotenoids inhibit the production of various reactive oxygen species and free radicals, which can otherwise cause chronic inflammatory and autoimmune diseases in humans, like pulmonary hypertension syndrome (ascites) of broilers (Iqbal et al., 2002). Flavonoids and carotenoids inhibit oxidation because of their capacity to inhibit oxidases, activate anti-oxidant enzymes, chelate metal catalysts, transfer free radical electrons, and reduce alpha-tocopherol radicals (Middleton et al., 2000; Nijveldt et al., 2001). Bio-flavonoids can reduce the oxidative stress and improve the performance of various farm animals (Abd El-Gawad et al., 2001; Hager-Theodorides et al., 2014). Flavonoids and carotenoids may effect by their interactions with specific proteins that are important to various intracellular signaling cascades. Particularly, flavonoids may selectively act with various components of protein kinase signaling cascades like protein kinase C, asphosphoinositide 3-kinase, Akt/

protein kinase B, etc. (Hou and Kumamoto, 2010). Moreover, *C. officinalis* extract shows activity against reactive oxygen species (ROS) and reactive nitrogen species (RNS) with an effective activity even at low concentration (Braga *et al.*, 2009). *In vitro*, *C. officinalis* butanolic fraction possesses a high anti-oxidant and free radical scavenging activity (Cordova *et al.*, 2002). Butanolic fraction (BF) decreased the concentration of hydroxyl radicals (OH·) and superoxide radicals (O^{2–}). BF also showed 100% inhibition of lipid peroxidation in rat liver microsomes induced by Fe²⁺/ascorbate.

Sabir *et al.* (2015) also reported anti-oxidant activity of *C. officinalis* with flower extract showing higher anti-oxidant activity than leaf extract. *C. officinalis* flower extract having anti-oxidant activity protects the human skin cells against oxidative damage which otherwise can lead to ageing or skin cancer (Alnuqaydan *et al.*, 2015).

Anti-HIV and Anti-cancerous Activity

In vitro flower tincture showed antiviral activity by suppressing the replication of influenza APR-8, influenza A2 and herpes simplex virus (Silva *et al.*, 2007). *In-vitro* dichloromethane-methanolic extract of *Calendula* flowers showed an effective anti-HIV activity through the inhibition of HIV1-RT and suppression of HIV-mediated fusion (Kalvatchev *et al.*, 1997).

In vitro ethyl acetate soluble fraction of Calendula flower extract showed cytotoxic effect due to the presence of two main compounds: calenduloside G'6-O-methyl-ester and calenduloside F'6-O-butyl-ester (Ukiya et al., 2006). Calenduloside G'6-O-methyl-ester showed anti-cancerous activity against melanoma (UAAC-62, SK-MEL-5 and LOXIMVI), leukaemia (RPMI-8226 and MOLT-4) and colon cancer (HCC-2998) cell lines. Calenduloside F'6-O-butyl-ester also showed anticancerous activity against these cell lines (Ukiya et al., 2006). In vitro aqueous laser activated calendula extract (LACE) showed 70-100% proliferation inhibition of murine and human tumor cell lines through cell cycle arrest at G0/G1 phase and caspase-3induced apoptosis (Medina et al., 2006). Moreover, invivo LACE exhibited anti-tumor activity in nude mice (Medina et al., 2006).

Laser Activated *Calendula* Extract (LACE) showed 100% inhibition of growth of cancer cell lines by inducing cell cycle arrest in G0/G1, mediated via down-regulation of CDK1-Cdc2, CDK2, CDK4 and CDK6, and cyclin E y A, D1 and D3 (Medina *et al.*, 2006). LACE induces the apoptotic death and increased concentration of LACE increases the rate of apoptosis. LACE treatment causes 100% growth inhibition in Jurkat cells in leukemia cell lines (Medina *et al.*, 2006).

Nephroprotective Activity

CO flower extract inhibit the cisplatin (cis-dichloro diamine platinum II/ platinum containing anticancerous drug) induced oxidative stress and reduces the kidney damage (Preethi *et al.*, 2009). The renal accumulation of platinum leads to nephrotoxicity. The *Calendula* extract reduces the kidney damage due to its anti-oxidant activity. The increased activity of SOD, CAT and increased level of GSH in extract treated group leads to the protection against cisplatin induced renal damage (Preethi *et al.*, 2009).

Prevention of Oropharyngealmucositis

Oropharyngealmucositis (OM) is reported as the main side effect of cancer radiotherapy, involving oral mucosa inflammation, atrophy, erythema, swelling and ulceration (Raber-Durlache et al., 2010; Sonis, 2004; Trotti et al., 2003). The initiation phase of radiotherapy induced injury in OM leads to the production of reactive oxygen species (ROS) by injured cells and clonogenic cell death (Babaee et al., 2013). However, the phenolics and the hydroxyl group containing flavonoids present in Calendula are the antioxidants with free radical scavenging and chelating activities (Jacobo-Velazquez and Cisneros-Zevallos, 2009; Es-Safi et al., 2007; Heijnen et al., 2001; Younes and Siegers 1981), and play a very important role in protecting the body from ROS induced oxidative stress. The presence of these phenolics and flavonoids in CO and their high anti-oxidant activity is responsible for its protective effect in radiotherapy-induced OM (Babaee et al., 2013). Calendula mouthwash decreased OM intensity without any side effect (vomiting and nausea) but could not completely prevent it, which can be further explained by OM patho-biology (Babaee et al., 2013).

Hypoglycemic and Gastroprotective Effect

The butanol-soluble fraction and methanolic extract of *C. officinalis* flowers showed hypoglycemic effect in oral glucose-loaded mice due to the presence of saponins [two oleanolic acid 3, 28-bisdesmosides (5,7) and two oleanolic acid 3-monodesmosides (8,10)] and glycosides A, B, C, D and F. The two oleanolic acid 3-monodesmosides (8,10) showed significant hypoglycemic activity, while seldom hypoglycemic activity was observed with the two oleanolic acid 3, 28-bisdesmosides (5,7) (Yoshikawa *et al.*, 2001). The significant hypoglycemic activity of extracts and individual compounds of *Calendula* flowers shows that it can be used as a forth coming anti-diabetic drug (Yoshikawa *et al.*, 2001).

Saponins (5-8, 10) present in the flowers of *C. officinalis* showed gastro-protective effect against ethanol and indomethacin-induced gastric mucosal lesions in rats. The saponins (5-8, 10) also showed inhibitory activity in the ethanol-induced gastric lesions, while two oleanolic acid 3-monodesmosides (8, 10) and two oleanolic acid 3,28-bisdesmosides (5, 7) showed a protective effect against indomethacin-induced gastric lesions. The oleanolic acid 3-monodesmoside (8) and oleanolic acid 3, 28-bisdesmoside (5, 7) activities were more effective than the activities of two oleanolic acid 3-monodesmosides (6, 10) (Yoshikawa *et al.*, 2001).

The ethanolic extract of *Calendula* has been found to possess anti-acid and anti-ulcer activity in rats due to its gastro-protective and anti-secretory effect (Chandra *et al.*, 2015). The ethanolic extract of *Calendula* stimulates mucus secretion and glutathione (GSH) level, while suppressing the pepsin level, thus being the mechanism responsible for gastroprotection (Chandra *et al.*, 2015).

Toxic Effect

C. officinalis extract has been found to be non-toxic, non-mutagenic and non-genotoxic (Taylor and Francis Health Sciences, 2001) with no reports of toxicity and mortality (Silva *et al.*, 2007, Lagarto *et al.*, 2011).

Conclusion

As the plant *C. officinalis* - possesses wide variety of phyto-chemicals and pharmacological activities, so it can be considered as an excellent source of new drugs. Many reports are available on the *Calendula* having highly effective anti-bacterial, anti-fungal, antihelminthic, anti-molluscal and anti-inflammatory properties with no toxicity. It is a promising plant which needs to be investigated thoroughly and can be exploited for extraction of active ingredients that can be used in the synthesis of different drugs, for the protection against various maladies and management of various diseases.

References

- Abajova R L, Aslanov S M and Mamedova M E (1994) Amino acids of *Calendula officinalis.ChemNat Compd* **30** 614-641
- Abd El-Gawad H M and Khalifa A E (2001) Quercetin, coenzyme Q10, and L-canavanine as protective agents against lipid peroxidation and nitric oxide generation in endotoxininduced shock in rat brain *Pharmacol Res* **43** 257-63
- Alder G and Kasprzyk Z (1975) Free sterols, steryl esters, glycosides, acetyled glycoside and watersoluble complexes in *Calendula officinalis Phytochemistry* **14** 627-631
- Alnuqaydan A M, Lenehan C E, Hughes R R and Sanderson B J (2015) Extracts from *Calendula officinalis* offer in vitro protection against H₂O₂ induced oxidative stress cell killing of human skin cells. *Phytother Res* **29** 120-12
- Al-Snafi A E (2016) Antiparasitic effects of medicinal plants (part 1)-A review. *IOSR JPharm* 6 51-66
- Aro AA, Perez M O, Vieira C P, Esquisatto M A M, Rodrigues R AF, Gomes L and Pimentel ER (2015) Effect of *Calendula officinalis* cream on achilles tendon healing *Anat Rec* **298** 428-435
- Asif M (2015) Pharmacological activities and phytochemistry of various plants containing coumarin derivatives *Current Sci Perspectives* **1** 77-90
- Babaee N, Moslemi D, Khalilpour M, Vejdani F, Moghadamnia Y, Bijani A, Baradaran M, Kazemi M T, Khalilpour A, Pouramir M and Moghadamnia A A (2013) Antioxidant capacity of *Calendula officinalis* flowers extract and prevention of radiation induced oropharyngeal mucositis in patients with head and neck cancers: a randomized controlled clinical study *DARUJ Pharm Sci***21** 18-25
- Badami R C and Morris L J (1965) The oxygenated fatty acids of *Calendula* seed oil *J Am OilChem Soc* **42** 1119-1121
- Bako E, Deli J and Toth G (2002) HPLC study on the carotenoid composition of *Calendula* products *J Biochem Biophys Methods* **53** 241-250

Acknowledgement

The authors are grateful to the DST and DBT for providing the financial support. NJ acknowledges the funding by DST, Govt. of India under Women Scientist Fellow Scheme.

- Bashir S, Janbaz K H, Jabeen Q and Gilani A H (2006) Studies on Spasmogenic and Spasmolytic Activities of *Calendula* officinalis flowers *Phytother Res* **20** 906-910
- Berenbaum M R, Nitao J K and Zangerl A R (1991) Adaptative significance of furanocoumarin diversity in *Pastinaca sativa* (apiaceae) *J Chem Ecol* **17** 207-215
- Bisset N G (1994) Herbal drugs and phytopharmaceuticals. C R C Press: London.
- Bone K (2003) A clinical Guide to blending liquid herbs. St Louis Missoun, Churchill livinigstone, pp. 120-123
- Boyoma F F, Ngouanaa V, Zollob P H A, Menut C, Bessiere J M, Gut J and Rosenthal P J (2003) Composition and antiplasmodial activities of essential oils fromsome Cameroonian medicinal plants *Phytochemistry* 64 1269-1275
- Braga PC, Dal Sasso M, Culici M, Spallino A, Falchi M, Bertelli A, Morelli R and Lo Scalzo R (2009) Antioxidant activity of *Calendula officinalis* extract: inhibitory effects on chemiluminescence of human neutrophil bursts and electron paramagnetic resonance spectroscopy *Pharmacology* 83 48-55
- Braun L and Cohen M (2005) Herbs and Natural Supplements: An Evidence-Based Guide, Elsevier, Sydney, pp. 98-100
- Cahoon E B, Dietrich C R, Meyer K, Damude H G, Dyer J M and Kinney A J (2006) Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds *Phytochemistry* **67** 1166-1176
- Cahoon E B, Ripp K G, Hall S E and Kinney AJ (2001) Formation of conjugated "⁸, "¹⁰-double bonds by "¹²-oleic-acid desaturase-related enzymes *J Biol Chem* **276** 2637-2643
- Chandra P, Kishore K and Ghosh A K (2015) Evaluation of antacid capacity and antiulcer activity of *Calendula* officinalis L. in experimental rats Orient Pharm Exp Med 15 277-285

Chandran P K and Kutton R (2008) Effect of Calendula officinalis

flower extract on acute phase proteins, antioxidant defense mechanism and granuloma formation during thermal burns *J Clin Biochem Nutr***43** 58-64

- Chidambaram J, Saritha K, Maheswari R and Muzammil M S (2014) Efficacy of green synthesis of silver nanoparticles using flowers of *Calendula officinalis Chem Sci Tran***3** 773-777
- Cordova C A, Siqueira I R, Netto C A, Yunes R A, Volpato A M, Cechinel S, Filho V, Curi-Pedrosa R and Creszynski-Pasa T (2002) Protective properties of butanolic extract of the *Calendula officinalis* (marigold) against lipid peroxidation of rat liver microsomes and action as free radical scavenger *Redox Rep* **7** 95-102
- Crombie L and Holloway S J (1984) Chem Commun J Chem Soc 15 953-955
- Della L R (1990) Topical anti-inflammatory activity of *Calendula* officinalis extracts *Planta Med* **56** 658-658
- Della L R, Tubaro A, Sosa S, Becker H, Saar S and Isaac O (1994) The role of triterpenoids in topical anti-inflammatory activity of *Calendula officinalis* flowers *Planta Med* **60** 516-520
- Dinda K and Craker L E (1998) Growers Guide to Medicinal Plants. HSMP Press, Amherst, pp. 35-37
- Dorwal D (2012) Anthelmintic activity of methanolic and ethanolic leaf extract of *Calendula officinalis Int J Pharm Biomed Res* **3** 831-833
- Dulf F V, Pamfil D, Baciu A D and Pintea A (2013) Fatty acid composition of lipids in pot marigold (*Calendula officinalis* L.) seed genotypes *Chem Cent J* 7 8
- Eitterl-Eglseer K, Reznicek G, Jurenitsch J, Novak J, Zitter W and Franz C (2001) Morphogenetic variability of faradiol monoesters in marigold (*Calendula officinalis* L.). *Phytochemistry* **12** 199-201
- Es-Safi N E, Ghidouche S and Ducrot P H (2007) Flavonoids: hemisynthesis, reactivity, characterization and free radical scavenging activity *Molecules* **12** 2228-2258
- Fliesonner A M (1985) Plant extracts: To accelerate healing and reduce inflammation *Cosmet Oil* **45** 100-113
- Frankic T, Salobir K and Salobir J (2008) The comparison of in vivo antigenotoxic antioxidative capacity of two propylene glycol extracts of *Calendula officinalis* (Marigold) and vitamin E in young growing pigs *J Anim Physiol Anim Nutr* **41** 1-7
- Fritsche K, Hornung E, Petzsch N, Renz A and Feussner I (1999) Isolation and characterization of a calendic acid producing (8,11)-linoleoyldesaturase *FEBS Lett* **462** 249-253
- Gazim Z C, Ferriera G A, Rezende C M, Nakamura C V, Dias-

Filho B P and Cortez D A G (2007) Identifica fração dos of constituintes quimicos da fração volâtil da *Calendula officinalis paran£ Horticulturá Brasileira* **25** 118-121

- Gazim Z C, Rezende C M, Fraga S R and Svidzinski T I E (2008)
 Antifungal activity of the essential oil from *Calendula* officinalis L. (Asteraceae) growing in Brazil Braz
 J Microbiol39 61-63
- Goodwin T W (1954) Studies in carotenogenesis: The carotenoids of the flower petals of *Calendula officinalis Biochem J* 58 90-94
- Grieve M (1931) A Modern Herbal: The medicinal, culinary, cosmetic and economic properties, cultivation and folklore of herbs, grasses, fungi, shrubs and trees with all their modern scientific uses, Jonathan Cape Ltd, London, pp 456
- Hager-Theodorides AL, Goliomytis M, Delis S and Deligeorgis S (2014) Effects of dietary supplementation with quercetin on broiler immunological characteristics *Anim Feed Sci Technol* 198 224-230
- Hamad M N, Mohammed H J and Merdaw M A (2011) Antibacterial activity of *Calendula officinalis* flowers *In vitro Ibn Al- Haitham J For Pure & Appl Sci* **24** 3
- Hamburge M, Alder S, Baumann D, Forg A and Weinreich B (2003) Preparative purification of the major antiinflammatory triterpenoid esters from marigold (*Calendula officinalis* L.). *Fitoterapia* **74** 328-338
- Hansel R, Keller K, Rimpler H and Schneider G (1992) Hagers Handbuch Derpharmazeutischem Praxis. Springer, Berlin
- Heijnen C G, Haenen G R, Van Acker F A, Vander Vijgh W J and Bast A (2001) Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups *Toxicol In Vitro* 15 3-6
- Hou D X and Kumamoto T (2010) Flavonoids as protein kinase inhibitors for cancer chemoprevention: direct binding and molecular modeling *Antioxid Redox Signal* **13** 691-719
- Huang X, Zhou H and Zhang H (2006) The effect of Sargassum fusiforme polysaccharide extracts on vibriosis resistance and immune activity of the shrimp, *Fenneropenaeus chinensis Fish Shellfish Immunol* **20** 750-757
- Iatsyno A I, Belova L F, Lipkina G S, Sokolov S I and Trutneva E A (1978) Pharmacology of calenduloside B, a new triterpene glycoside from the roots of *Calendula officinalis Farmakol Toksikol* **41** 556-60
- Iauk L, Lo-Bue A M, Milazzo I, Rapisarda A and Blandino G (2003) Antibacterial Activity of Medicinal Plant Extracts Against Periodontopathic Bacteria *Phytother Res* 17 599-604

- Im S A, Kim K and Lee C K (2006) Immunomodulatory activity of polysaccharides isolated from *Salicornia herbacea Int Immunopharmacol* **6** 1451-1458
- Iqbal M, Cawthon D, Beers K, Wideman Jr R F and Bottje W G (2002) Antioxidant enzyme activities and mitochondrial fatty acids in pulmonary hypertension syndrome (PHS) in broilers *Poult Sci* 81 252-260
- Issac O (1992) Die Ringelblume. Botanik, Chemie, Pharmakologie, Toxikologie, Pharmazie and Therapeutische Verwendung. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 787
- Jacobo-Velazquez D A and Cisneros-Zevallos L (2009) Correlations of antioxidant activity against phenolic content revisited: a new approach in data analysis for food and medicinal plants *J Food Sci* **74** 107-113
- Janiszowka W, Michalski W and Kasprzyk Z (1976) Polyprenyl quinines and α-tocopherol in *Calendula officinalis Phytochemistry* **15** 125-127
- Kalvatchev Z, Walder R and Garzaro D (1997) Anti-HIV activity of extracts from *Calendula officinalis* flowers *Biomedical Pharmacology* **51** 176-180
- Kasprzyk Z and Wilkomirski B (1973) Structure of a new triterpene triol from *Calendula officinalis* flowers *Phytochemistry* **12** 2299-2300
- Kemper K G (1999) Calendula (*Calendula officinalis*), The Longwood Herbal Task Force and the centre for Holistic Pediatric Education and Research. pp 767
- Kerkach A I, Komissarenko N F and Chernobai V T (1986) Coumarins of the inflorescences of *Calendula officinalis* and *Helichrysum arenarium Khim Prir Soed* 6 777-778
- Khalid K A and Teixeira da Silva J A (2012) Biology of *Calendula* offiinalis Linn.: Focus on pharmacology, biological activities and agronomic practices. *Med Aromat Plant Sci Biotechnol* **6** 21-27
- Kirtikar K R and Basu B D (1993) Indian Medicinal Plants.vol. I. Dehradun, India, pp. 296
- Kishimoto S, Maoka T, Sumitomo K and Ohmiya A (2005) Analysis of Carotenoid Composition in Petals of Calendula (*Calendula officinalis* L.). *Biosci Biotechnol Biochem* 69 2122-2128
- Komeo H and Hayashi N (1971) Paraffins of the petals *Calendula* officinalis Phytochemistry **10** 1944-1948
- Kuppast I J and Nayak P V (2006) Wound healing activity of Cordia dichotoma. Frost f. fruits Nat Prod Rad 5 99-102
- Kurkin, V A and Sharova O V (2007) Flavonoids from Calendula officinalis flowers Chem Nat Prod 43 216-217
- Kuwahara K and Kimura T (2015) The organ-protective effect of N-type Ca²⁺ channel blockade*Pharmacol Ther* **151** 1-7

- Lagarto A, Bueno V, Guerra I, Valdes O, Vega Y and Torres L (2011) Acute and subchronic oral toxicities of *Calendula* ofûcinalis extract in Wistar rats *Experimental and Toxicologic Pathology* **63** 387-391
- Leach M J (2008) *Calendula officinalis* and wound healing: A systematic review *Wounds* **20** 1-7
- Lim T K (2013) Calendula officinalis.Edible medicinal and nonmedicinal plants. pp 213-244
- Lin L T, Liu L T, Chiang L C and Lin C C (2002) In vitro antihepatoma activity of fifteen natural medicines from Canada *Phytother Res* **16** 440-444
- Mark M M, Linda F C, Leo B T, Weinberg J B, Haney A F and Ramakrishnan S (2006) Serum and ascitic fluid levels of interleukin-1, interleukin-6, and tumor necrosis factoralpha in patients with ovarian epithelial cancer *Cancer* **72** 2433–2440
- Matysik G, Wojciak-Kosior M and Paduch R (2005) The influence of *Calendula officinalis* flos extract on cell cultures and the chromatographic analysis of extracts *J Pharm Biomed Anal* **38** 285-292
- Maysa M, El Mallah and Mohamed R A (2015) Hepatoprotective Effect of *Calendula officinalis* Linn (Asteraceae) Flowers Against CCL4 – Induced Hepatotoxicity in Rats *World Appl Sci J* **33** 949-1959
- Medina E J, Angel L G, Paco L, Algarra I, Collado A and Garrido F (2006) A new extract of the plant *Calendula officinalis* produces a dual in vitro effect: Cytotoxic anti-tumor activity and lymphocyte activation *BMC Cancer* **6** 1-4
- Middleton E, Kandaswami C and Theoharides T (2000) The effect of plant flavonoids on mammalian cells: Implications for inflammation, heart disease and cancer *Pharmacol Rev* 52 673-751
- Miliauskas G, Venskutonis P R and Van Beek T A (2004) Screening of radical scavenging activity of some medicinal and aromatic plant extracts *Food Chem* **85** 231-237
- Mills S Y (1991) The Essential Book of Herbal Medicine, Penguin Books Ltd, Harmondsworth, Middlesex. pp 765
- Muley B P, Khadabadi S S and Banarase N B (2009) Phytochemical constituents and pharmacological activities of *Calendula officinalis* L. (Asteraceae): A Review *Trop J Pharm Res* **8** 455-465
- Nattel S (2014) N-type calcium channel blockade: a new approach to preventing sudden cardiac death? *Cardiovasc Res* **104** 1-2
- Naved T, Ansari S H, Mukhtar H M and Ali M (2005) New triterpenic esters of oleanene-series from the flowers of *Calendula officinalis* L *Med Chem* **44** 1088-1091

- Neukiron H, D'Ambrosio M, Dovia J and Guerriero A (2004) Simultaneous quantitative determination of eight triterpenoid monoesters from flowers of 10 Varieties of *Calendula officinalis* L. *Phytochemistry* **15** 30-35
- Nicoletta C B, Marongiu P A, Pivetta T and Procedda S (2003) Extraction, separation and isolation of volatiles and dyes from *Calendula officinalis* L. and *Aloysia tryphylla* (L'Her) britton by supercritical CO₂ J Essent Oil Res **15** 272-277
- Nijveldt R J, van Nood E, van Hoorn D E, Boelens P G, van Norren K and van Leeuwen P A (2001) Flavonoids: a review of probable mechanisms of action and potential applications *Am J Clin Nutr* **74** 418-425
- Niyogi K K, Bj" rkman O and Grossman A R (1997) The roles of specific xanthophylls in photoprotection *Proc Natl Acad Sci USA* **94** 14162-14167
- O'kennedy R and Thornes R D (1997) Coumarins-biology, applications and mode of action, John Wiley & Sons Ltd, Chichester
- Okoh O O, Sadimenko A A and Afolayan A J (2007) The Effects of Age on the Yield and Composition of the Essential Oils of *Calendula officinalis J Appl Sci* **7** 3806-3810
- Perez-Carreon J I, Cryz-Jimener G, Licea-Vega J A, Popoca E A, Fazenda S F and Villa-Trevinos (2002) Genotoxic and antigenotoxic properties of *Calendula officinalis* extracts in rat liver culture treated with diethylnitrosamine *Toxicol In Vitro* **16** 253-258
- Pintea A, Bele C, Andrei S and Socaciu C (2003) HPLC analysis of carotenoids in four varieties of *Calendula officinalis* L. flowers *Acta Biologica Szegediensis* **47** 37-40
- Pintea A, Dulf F, Bele C and Andrei S (2008) Fatty acids distribution in the lipid fractions of *Calendula officinalis*L. seed soil *Chem Listy* **102** 749-750
- Preethi K C, Kyttan G and Kuttan R (2009) Anti-inflammatory activity of flower extract of *Calendula officinalis* L. and its possible mechanism of action *Indian J Exp Biol* **47** 113-120
- Raal A and Kirsipuu K (2011) Total flavonoid content in varieties of *Calendula officinalis* L. originating from different countries and cultivated in Estonia *Nat Prod Res* 25 658-62
- Raber-Durlacher J E, Elad S and Barasch A (2010) Oralmucositis Oral Oncol **46** 452-456
- Rasu M A, Tamas M, Puica C, Roman I and Sabadas M (2005) The hepatoprotective action of ten herbal extracts in CCl4 intoxicated liver *Phytother Res* **19** 744-749
- Re T A, Mooney D, Antignac E, Dufour E, Bark I, Srinivasan V and Nohynek G (2009) Application of the threshold of

toxicological concern approach for the safety evaluation of *Calendula* flower (*Calendula officinalis*) petals and extracts used in cosmetic and personal care products *Food Chem Toxicol***47** 1246-1254

- Roopashree T S, Dang R, Rani R H and Narendra C (2008) Antibacterial activity of antipsoriatic herbs; Cassia tora, Momordica charantia and Calendula officinalis Int J Appl Res Nat Prod 1 20-28
- Rossiter K, Reid P D, Lwaleed B A, Cooper A J, Voegeli D, Cooper R and Getliffi K (2006) Honey and angiogenesis; 1st International conference on the medicinal uses of Honey; Kota Bharu; Malaysia
- Ruszkowski D, Szakiel A and Janiszowska W (2003) Metabolism of [3-3H] oleanolic acid in *Calendula officinalis* L. roots J Appl Sci **25** 311-317
- Sabir S M, Khan M F, Rocha J B T, Boligon A A and Athayde M L (2015) Phenolic profile, antioxidant activities and genotoxic evaluations of *Calendula officinalis J Food Biochem* **39** 316-324
- Schulz V, Hansel R, Blumenthal M and Tyler V (2004) Rational Phytotherapy, a reference guide for physicians pharmacists. Springer, Berlin
- Shahrbabaki S M A K, Zoalhasani S and Kodory M (2013) Effects of sowing date and nitrogen fertilizer on seed and flower yield of pot marigold (*Calendula officinalis* L.) in the Kerman *Adv Environ Biol* **7** 3925-3929
- Silva E J, Gonçalves E S, Aguiar F, Evêncio L B, Lyra M M, Coelho M C, Fraga M C and Wanderley A G (2007) Toxicological studies on hydroalcohol extract of *Calendula* officinalis L. Phytother Res 21 332-336
- Sliwowski J, Dziewanowska K and Kasprzyk E (1973) Ursadiol: A new triterpene diol from *Calendula officinalis* flowers *Khim Prir Soed* **12** 157-160
- Sonis S T (2004) A biological approach to mucositis J Support Oncol 2 21-32
- Stenvinkel P, Ketteler M, Johnson R J, Lindholm B, Pecoits-Filho R, Riella M, Heimburger O, Cederholm T and Girndt M (2005) IL-10, IL-6, and TNF-alpha: Central factors in the altered cytokine network of uremia-- the good, the bad, and the ugly *Kidney Int* 67 1216-33
- Taylor, Francis Health Sciences (2001) Final report on the safety assessment of *Calendula ofûcinalis* extract and *Calendula* ofûcinalis Int J Toxicol **20** 13-20
- Tonks A J, Dudley E, Porter N G, Parton J, Brazier J, Simth E L and Tonks A (2007) A 5.8-kDa component of manuka honey stimulates immune cells via TLR4 *J Leukoc Biol* 82 1147-55

- Trotti A, Bellm L A, Epstein J B, Frame D, Fuchs H J, Gwede C K and Komaroff E (2003) Mucositis incidence, severity and associated outcomes in patients with head and neck cancer receiving radiotherapy with or without *Radiother Oncol* **66** 253-262
- Ukiya M, Akihisa T, Yasukava K, Tokuda H, Suzuki T and Kimura Y (2006) Anti-inflammatory, anti-tumorpromoting and cytotoxic activities of constituents of marigold (*Calendula officinalis*) flowers J Nat Prod **69** 1692-1696
- Valavanidis A, Vlachogianni T and Fiotakis C (2009) 8-hydroxy 2' -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis *J Environ Sci Health C Environ Carcinog Ecotoxicol Rev* 27 120-139
- Varlijen J (1989) Structural analysis of rhamnoarabinogalactans and arabinogalactans with immunostimulating activity from *Calendula officinalis Phytochemistry* **28** 2379-2383
- Vecherko L P, Kabanov U S, Zenkevich E P and Kogan L M (1971) The structure of calenduloside B from the roots of *Calendula officinalis Khim Prir Soed* **4** 533-533
- Vecherko L P, Siviridov A F, Zenkevich E P and Kogan L M (1974) The structures of calenduloside G and H from the roots of *Calendula officinalis Khim Prir Soed* **4** 532-534
- Vecherko L P, Siviridov A F, Zenkevich E P and Kogan L M (1975) The structure of calenduloside C and D from the roots of *Calendula officinali*. *Khim Prir Soed* **3** 366-373
- Vecherko L P, Zenkevich E P, Libizov N I and Ban'kooskii A I (1969) Calenduloside A from *Calendula officinalis Khim Prir Soed* **5** 58-59
- Vidal-Ollivier E, Balansard G and Faure A (1989) Revised structures of triterpenoid saponins from the flowers *Calendula officinalis J Nat Prod* **52** 1156-1159
- Viuda-Martos M, Gendy A E G S, Sendra E, Fernandez-Lopez J, Razik K A A, Omer E A and Perez-alvarez J A (2010) Chemical composition and antioxidant and anti-Listeria activities of essential oils obtained from some Egyptian plants J Agric Food Chem 58 9063-9070
- Vlchenko N T, Glushenkova A I and Mukhamedova K S (1998) Lipids of Calendula officinalis Chem Nat Compd **34** 272-274
- Vodnar D C (2012) Inhibition of Listeria monocytogenes ATCC 19115 on ham steak by tea bioactive compounds incorporated into chitosan-coated plastic films *Chem Cent* J 6 74-81

- Wagner H, Proksch A, Riess-Maurer I, Vollmar A, Odenthal S, Stuppner H, Jurcic K, Le Turdu M and Jn. Fang (1985) Immunstimulierend wirkende Polysaccharide (Heteroglykane) aus höheren Pflanzen Arzneimittel-Forschung 7 1069-1075
- Weiner MA (1990) Weiner's Herbal-The Guide to Herb Medicine. Quantum Books, Mill Valley, pp. 129
- Weinmann I (1997) History of the development and applications of coumarin and coumarin-related compounds in: O'kennedy & Thornes. pp. 1-22
- Wilkomirski B (1985) Pentacyclic triterpene triols from *Calendula* officinalis flowers *Phytochemistry* **24** 3066-3067
- Wilkomirski B and Kasprzyk Z (1979) Free and ester-bound triterpene alcohols and sterols in cellular subfractions of *Calendula officinalis Phytochemistry* **18** 253-255
- Willuhn G and Westhaus R G (1987) Loliolide (calendin) from Calendula officinalis Planta Medica **53** 304-309
- Wojciak-Kosior M, Matysik G and Soczewinski E (2003) Investigations of phenolic acids occurring in plant components of Naran N by HPLC and HPTLC densitometric methods *Herba Polonica* **49** 194-201
- Wojciechowski Z, Bochenska-Hryniewick M, Kurchareza K B and Kasprzyk Z (1972) Sterols and triterpene alcohol esters from *Calendula officinalis Phytochemistry* **11** 1165-1168
- Wojciechowski Z, Jelonkiewicz-Konador A, Tomaszewski M, Jankowski J and Kasprzyk Z (1971) The structure of glucosides of oleanolic acid isolated from the roots of *Calendula officinalis* flowers *Phytochemistry* **10** 1121-1124
- Yoshikawa M, Murakami T, Kishi A, Kageura T and Matsuda H (2001) Medicinal flowers. III. Marigold. (1): Hypoglycemic, gastric emptying inhibitory, and gastroprotective principles and new oleanane-typetriterpene oligoglycosides, calendasaponins A, B, C, and D, from Egyptian *Calendula officinalis Chem Pharm Bull* 49 863-870
- Younes M and Siegers C P (1981) Inhibitory action of some flavonoids on enhanced spontaneous lipid peroxidation following glutathione depletion *Planta Med* **43** 240-244
- Zittwel-Eglseer K, Sosa S, Jurenitsch J, Schubert Zsilavecz M, Loggia R D, Tubaro A, Bertoldi M and Franz C (1997) Anti-oedematous activities of the main triterpenoid esters of marigold (*Calendula officinalis* L.) *J Ethnopharmacol* 57 139-144.