Understanding the reasons of variations in luminescence sensitivity of natural Quartz using spectroscopic and chemical studies

Keywords: Quartz, Luminescence sensitivity, lattice defects.

Abstract

Natural quartz from diverse provenances exhibit variations in their luminescence sensitivity (photon flux/mg·Gy) that span over ten orders of magnitude. A range of factors (such as crystallization/recrystallization process, irradiation, thermal and optical history) that lead to varied  luminescence sensitivity  have been attributed to such differences but a clearly definable/identifiable reason  is still awaited; which could be translated in to the identification of commonly occurring luminescence  quenchers/ enhancers that may be found in natural  quartz samples.  Towards this, quartz mineral grain separates from different provenances and varied depositional environments were examined spectroscopically using Fourier Transform infra-red spectroscopy (FTIR), optically stimulated luminescence (OSL), photoluminescence (PL), time resolved PL (TRPL) decay, thermoluminescence (TL) and the trace element analysis. Through the present study, an anti correlation emerges between OSL sensitivity and water content in quartz (estimated through integrated intensity of normalized FTIR signal in the wavenumber region 3000-3600 cm-1), such that a sensitivity change of over 5 orders of magnitude corresponded to a change in integrated water absorption signal by 5 times, but in opposite direction. PL and TRPL results enabled further insights. 

References

Bottern-Jensen, L. ; Mckeever, S.W.S.; Wintle, A.G.; (2004), IN: Optically Stimulated Luminescence Dosimetry, Elsevier Publications, ISBN: 0-444-50684-5

Bottern-Jensen, L.; Larsen, N. A.; Mejdahl, V.; Poolton, N.R.J.; Morris, M.F.; Mckeever, S.W.S.; (1995) Luminescence sensitivity changes in quartz as a result of annealing, Radiation Measurements, 24, 535-541.

Chithambo, M. L. ; Preusser, F.; Ramseyer, K.; Ogundare, F.O.; (2007) Time-resolved luminescence of low sensitivity quartz from crystalline rocks, Radiation Measurements, 42 , 205-212.

Frondel, C.; (1982) Structural hydroxyl in chalcedony (type B quartz), American Mineralogy, 67, 1248–1257.

Gotze, J.; Plotze, M.; Habermann, D.; (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz – a review, Mineralogy and Petrology, 71, 225-250.

Han, Z. Y.; Li, S.H.; Tso, M.Y.W.; (1997) Age dependence of luminescence signals from granitic and mylonitic quartz, Quaternary science reviews, 16, 427-430.

Krbetschek, M.; Gotze, J.; Trautmann, T.; (1997) Spectral information from mineral relevant for luminescence dating, Radiation Measurements, 27, 695-748.

Kuhn, R.; Trautmann,T.; Singhvi,A.K.; Krbetschek, M.R.; Wagner, G.A.; Stolz, W.; (2000) A study of Thermoluminescence emission spectra and optical stimulation spectra of quartz from different provenances, Radiation Measurements, 32, 653-657.

Martini, M.; Fasoli, M.; Galli, A.; (2009) Quartz OSL emission spectra and the role of [AlO4]° recombination centres, Radiation Measurements, 44, 458-461.

Martini, M.; Meinardi, F.; Rosetta, E.; Spinolo, G.; Vedda, A.; (1995) Wavelength resolved thermally stimulated luminescence of SiO2 films, Journal of Non-Crystalline Solids, 187,124-128.

Mckeever, S.W.S.; (1984) Thermoluminescence in Quartz and Silica, Radiation Protection Dosimetry, 8 (1-2), 81-98.

Nuttal, R. D.; Weil, J. A.; (1980) Two hydrogenic trapped-hole species in α-quartz, Solid State Communications, 33, 99–102.

Pagonis, V.; Chithambo, M.L.; Chen, R.; Chruścińska, A.; Fasoli, M.; Li, S.H.; Martini, M.; Ramseyer, K.; (2014) Thermal dependence of luminescence lifetimes and radioluminescence in quartz, Journal of Luminescence, 145, 38-48.
Poolton, N.R.J.; Smith, G.M.; Riedi, P.C.; Bulur, E.; Botter-Jensen, L.; Murray, A.S.; Adrian, M.; (2000) Luminescence sensitivity changes in natural quartz induced by high temperature annealing: a high frequency EPR and OSL study, Journal of Physics D: Applied Physics, 33, 1007-1017.

Preusser, F.; Chithambo, M. L.; Götte, T. ; Martini, M. ; Ramseyer, K.; Sendezera, E. J.; Susino, G. J.; Wintle, A. G.; (2009) Quartz as a natural luminescence dosimeter, Earth Science Reviews, 97, 184–214.

Rink, W.J.; (1994) Billion year age dependence of luminescence in granitic quartz, Radiation measurements, 23, 419-422.

Roy, P.; Balaram, V.; Kumar, A.; Satyanarayanan, M.; Rao, T.G.; (2007) New REE and Trace Element Data on Two International Kimberlitic Reference Materials by ICP-MS, Geostandards and Geoanalytical Research, 31(3), 261-273.

Sawakuchi, A.O.; Blair, M.W.; Dewitt, R.; Faleiros, F.M.; Hyppolito, T.; Guedes, C.C.F.; (2011) Thermal history versus sedimentary history: OSL sensitivity of quartz grains extracted from rocks and sediments, Quaternary Geochronology, 6, 261-272.

Sawakuchi, A.O.; Dewitt, R. ; Faleiros, F.M.; (2011) Correlation between thermoluminescence sensitivity and crystallization temperatures of quartz: Potential application in geothermometry, Radiation Measurements, 46, 51-58.

Takashi, Y.; Tomoyuki, T.; Tetsuo, H.; (2006) Dependence of luminescence sensitivities of quartz on α–β-phase inversion break temperatures, Radiation Measurements, 41, 841-846.

Vartanian, E.; Guibert, P.; Roque, C.; Bechtel, F.; Schvoerer, M.; (2000) Changes in OSL properties of quartz by preheating: an interpretation, Radiation Measurements, 32, 647-652.

W. L. Medlin, (1968), The nature of traps and emission centers in thermoluminescent rock materials & Thermoluminescence of Geological Materials, D. J. McDougall, ed., Academic Press, N. Y. 193-223.

Weil, J. A. ; A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz, Physics and Chemistry of Minerals, 10(1984)149–165.

Yang, X. H. ; McKeever, S. W. S.; (1990a) Point defects and the pre-dose effect in quartz, Radiation Protection Dosimetry, 33, 27-30.

Yang, X. H. ; McKeever, S. W. S.; (1990b) The pre-dose effect in crystalline quartz, Journal of Physics D: Applied Physics, 23(2), 237-244.

Yang, X. H.; McKeever, S. W. S.; (1988) Characterization of the pre-dose effect using ESR and TL, International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 14 (1-2), 75-79.
Published
2017-09-20
Section
Research Papers