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Deciphering the folding mechanism of small single-domain proteins has a long and well-chartered history that has been and 
still is aided by numerous experimental and computational approaches. The computational tools at the disposal of the 
folding community range from all-atom molecular simulations to structure-based models. In this review, we highlight 
one such structure-based statistical mechanical model termed the Wako-Saitô-Munõz-Eaton (WSME) model. We have, 
over the past few years, made the model physically more realistic by systematically introducing mean-field terms for 
solvation and electrostatics apart from conventional packing interactions. The WSME model can simply be calibrated 
with equilibrium unfolding curves and various features such as heat capacity thermograms, free-energy surfaces or 
profiles and hence the folding mechanism, changes in stability upon point mutations or certain post-translational 
modifications, thermodynamic vs. dynamic effects and possible connections with function fallout of the model without 
additional calibration. The model requires only a small set of tunable thermodynamic parameters (~3-4) allowing for a 
tremendous scope in further improvement of its energy function. Most importantly, it can be employed as a rapid, 
physical and ensemble-based tool to directly characterize experimental equilibrium and kinetic rate and amplitude data 
(in real world units), that is not conventionally possible in other native-centric treatments. We believe that the WSME 
model is now poised to address numerous questions in the field of protein folding including pathway heterogeneity, 
structural-energetic relations, quantifying disorder and the effect of point mutations in disease.
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Introduction

Understanding the intricate connection between the
patterning of amino-acid residues in a protein sequence
and the final structure, termed as the “folding
problem”, has been labeled as one of the 125 biggest
unsolved problems in science (Editorial, 2005). It is
unsolved because of two primary reasons: the
incredibly large conformational space accessible to a
protein chain (Levinthal, 1968) and the remarkable
diversity of non-covalent interactions. The former
disallows any computational protocol from sampling
each and every one of the conformations possible, as
a moderate protein domain of even 50 residues in
length can theoretically sample more than 1025

conformations. Additionally, a folded protein is

stabilized by a variety of non-covalent interactions, 
that include van der Waals, Coulombic, cation-
interactions, hydrogen bonds and importantly the 
enigmatic hydrophobic effect that includes both 
enthalpic and entropic contributions arising from 
not just the protein chain but also the solvent 
(Freire, 1995; Robertson and Murphy, 1997; 
Southall et al., 2002; Baldwin, 2007). The 
magnitude of each of these terms is also dependent 
on the degree of burial in a structure, the immediate 
electronic environment, the intrinsic chemical 
nature of the possible 20 amino acids that constitute 
the protein chain and their relative effect on water 
structure. In effect, there is a large compensation 
between the various (free-) energetic terms 
(Bryngelson et al., 1995; Akmal and Munõz, 2004; 
Naganathan et al., 2006), resulting in a protein
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stability of ~5-40 kJ/mol at 298 K, that is equivalent
to the strength of just a few hydrogen bonds! The
sequence-folding-structure-function is now
additionally confounded by the observation of a large
number of disordered proteins in several proteomes
(Uversky et al., 2000; Uversky, 2013).

Despite this complexity, tremendous strides have
been made in understanding folding mechanisms - the
order of formation of secondary structures (Englander
et al., 2007), pathway heterogeneity (single or multiple
folding paths?) (Udgaonkar, 2008), the presence or
absence of intermediates (Baldwin, 2008) and the
magnitude of thermodynamic barriers (Sanchez-Ruiz,
2011) - from the perspective of experiments. They
include ensemble and single-molecule measurements
(Moffitt et al., 2008; Schuler and Hofmann, 2013),
stopped-flow to laser temperature-jump (T-jump)
experiments for monitoring millisecond or (sub-)
microsecond kinetics (Jones et al., 1993), Nuclear
Magnetic Resonance (NMR) in isolation (Sekhar and
Kay, 2013) or in combination with hydrogen-exchange
(HX) mass spectrometry (Hu et al., 2013), multi-
spectroscopic-probe techniques (Garcia-Mira et al.,
2002; Ma and Gruebele, 2005), and fluorescence life-
time (Lakshmikanth et al., 2001), multi-site Forster
Resonance Energy Transfer (FRET) (Sinha and
Udgaonkar, 2008), and infra-red (IR) based
approaches (Vu et al., 2004; Kubelka and Kubelka,
2014; Ma et al., 2015).

The experiments are now routinely supplemented 
with additional evidence from molecular simulations 
that range from all-atom molecular dynamics 
simulations (MD) in explicit solvent (Vendruscolo, 
2007; Best, 2012; Piana et al., 2014) to advanced 
sampling protocols (Leone et al., 2010; Doshi and 
Hamelberg, 2015; Perez et al., 2016). The complexity 
observed in experiments and simulations is in fact 
predicted by theoretical treatments. Numerous groups 
have independently contributed to the understanding 
of the basic physics of the folding process through 
lattice-, off-lattice simulations and analytical models 
(Bryngelson et al., 1995; Lumry et al., 1966; Taketomi 
et al., 1975; Freire and Biltonen, 1978; Wako and 
Saito, 1978; Ikegami, 1981; Finkelstein and 
Shakhnovich, 1989; Thirumalai, 1995; Abkevich et al., 
1995; Socci et al., 1996; Hilser and Freire, 1996; 
Onuchic et al., 1997; Dill and Chan, 1997; Munõz 
and Eaton, 1999; Mirny and Shakhnovich, 2001; Ghosh

et al., 2007; Naganathan et al., 2007; Hyeon and
Thirumalai, 2011; Chan et al., 2011). The general
consensus is that the amino acid sequence pattern
not only defines the final three-dimensional structure,
but also allows for a distribution of folding mechanisms,
intermediate populations, stabilities and barrier heights.

Given the complexity and variety in available
experimental protein folding data, and the time-
intensive nature and limited sampling afforded in all-
atom simulations, the focus has also been on alternate
methods. Particularly, coarse-grained (CG)
simulations that reduce the number of degrees of
freedom associated with a protein chain have had
tremendous successes in capturing the basic physics
of the folding process (Hyeon and Thirumalai, 2011;
Chan et al., 2011; Brooks, 1998; Clementi et al., 2003).
A majority of CG models rely on Go-like energetics,
i.e. they assume that only those interactions present
in the native state of a protein (available from the
PDB file) contribute the most to the folding mechanism
(Taketomi et al., 1975). This is in tune with the
expectations from the energy landscape theory of
protein folding that postulates that most non-native
interactions (i.e. those that are not observed in the
native PDB file) have been weeded out through
millions of years of Natural Selection, thus effectively
smoothening the folding landscape to result in minimal
frustration (Bryngelson et al., 1995). Strong evidence
to this comes indirectly from work on designed
proteins that show complex unfolding behavior
compared to the natural proteins (Walters et al., 2007;
Sadqi et al., 2009) and all-atom MD simulations that
explicitly demonstrate the absence of productive non-
native interactions during folding (Best et al., 2013).

The CG simulations have numerous advantages
over the conventional MD protocols notable among
them being: (a) simulations converge faster, (b) allows
for enhanced conformational sampling due to the
smooth folding landscape, (c) a variety of energetic
functions can be incorporated with minimal effort and
(d) only a small subset of parameters is required (~10-
15) compared to all-atom MD that needs more than
100 parameters. However, the intrinsically rapid and
tunable nature of these models comes with a
disadvantage: a careful calibration needs to be
performed on the energy terms for a better and
quantitative understanding of experimental outputs.
In this review, we approach this problem through the
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eyes of a simple yet physical statistical mechanical 
and coarse-grained structure-based model called the 
Wako-Saitô-Munõz-Eaton (WSME) model (Wako 
and Saito, 1978; Munõz and Eaton, 1999; Henry 
and Eaton, 2004). We have, over the last few years, 
supplemented the basic model with additional energetic 
terms that has made it highly predictive compared to 
the original versions. We discuss below the brief 
history of the model, the various energetic terms, the 
advantages afforded by this treatment with specific 
examples and directions for future improvements.

Wako-Saitô-Munõz-Eaton (WSME) Model

Defining the Ensemble and a Brief History of the
Model

The basic idea behind the native-centric WSME model 
was developed independently by Wako and Saitô 
(Wako and Saito, 1978), and later by Munõz and 
Eaton (Munõz and Eaton, 1999). It accounts for the 
statistical nature of the folding process by constructing 
an ensemble with pre-defined rules that determines 
the nature of microstates that can be populated. Since 
the folded state is well defined, a binary variable 1 is 
allotted to conformations that sample native-like 
regions (folded-like conformations) of the 
Ramachandran map (Ramachandran et al., 1963) 
while a binary variable of 0 is employed to represent 
all other possible non-native dihedral angles or the 
residue unfolded status. In effect, for a N-residue 
protein this translates to 2N possible conformations or 
microstates. In their original work, Wako and Saitô 
(Wako and Saito, 1978) make an additional 
approximation that for any two residues to interact all 
the intervening residues should also be folded. This 
specific approximation enables the calculation of the 
total partition function Z over all the 2N states,

   e iF RT
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where Fi and wi are intrinsic free energy and
statistical weight of the state i, by a simple transfer-
matrix formalism that involves multiplying N N-by-N
matrices for a N-residue protein. Each matrix accounts
for the interactions of that particular residue with all
other residues following it. The free energy includes
contributions from both the energetics (from specific
interactions) and conformational entropy (see below).

While this work was lost to time, Munõz and 
Eaton developed a similar binary approach but limited 
their ensemble to specific collection of microstates 
defined solely by all possible single island of 1s (single 
sequence approximation; SSA), all possible two non-
interacting islands of 1s separated by 0s (double 
sequence approximation; DSA) and so on (Munõz 
and Eaton, 1999). This reduced the conformational 
space tremendously and the number of microstates 
for each of the approximations can be written

employing the binomial coefficient
1

2

N

m
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is the protein length and m is the sequence
approximation. The partition function for this specific
subset of conformations is then calculated
algorithmically.

The original work of Wako and Saitô came to
light in the publication of Bruscolini and Pelizzola who
proposed an alternate transfer-matrix strategy to
calculate the total partition function (Bruscolini and
Pelizzola, 2002). At about the same time, Henry and
Eaton developed an iterative method for the same
(Henry and Eaton, 2004). Effectively, three different
groups have proposed three different approaches for
the calculation of the total partition function highlighting
the interest in the folding community to exploit this
simple binary approach to the folding problem. An
important point to note here is that, in the WSME
model, the ensemble is pre-defined while one
generates the ensemble as a function of time in all
other explicit chain representations. This allows for a
rapid prediction of various experimental observables,
providing a significant advantage over all other methods
that are generally extremely time intensive. For
example, it just takes less than a minute to calculate
the temperature-dependent partition function for a,
say, 50 residue protein. Various partial partition
functions can also be generated by the derivative
methodology proposed by Wako-Saitô (Wako and
Saito, 1978) or, by employing symbolic operations (for
example, in MATLAB).

Entropic Penalty and Energetics

An important parameter in the WSME model is the
entropic penalty that refers to the cost of fixing a
residue in the native conformation. In other words,
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since the number of unfolded-like (U) conformations
for a residue outnumber the folded-like conformations
(F), i.e.,F/U <<1, the model invokes an entropic
penaltySconf  defined as:

      lnF U conf F US S S R

where  represents the density of microstates and R 
is the universal gas constant. Size-scaling studies of 
two-state thermodynamic parameters reveal that the 
entropic penalty should be ~–16.5 J mol–1 K–1 per 
residue (Robertson and Murphy, 1997). Though this 
estimate is an average over different residue types 
in several proteins, it is in agreement with 
independent measures from statistical analysis of 
Ramachandran maps (Munõz and Serrano, 1994), 
microcalorimetry measurements (Daquino et al., 
1996) and all-atom molecular dynamics simulations 
(Baxa et al., 2014). The magnitude of the entropic 
penalty estimated from the WSME model analysis 
of experimental data should therefore be within the 
range predicted by the various methods above. 
Many of the works that employ the WSME model 
do reveal similar numbers for the entropic penalty 
attesting to the physical reasonableness of the 
model (Naganathan, 2012).

Terms other than the entropic penalty can be
grouped under the broad umbrella of ‘stabilization
energetics’ (Gstab). In this regard, it is important to
note that the WSME model is structure-based or Go-
like and non-native interactions are not taken into
consideration.The free energy of each microstate with
a folded structure between residues m and n can be
represented as

,

n
stab
m n conf

m

F G T S     
WSME model has traditionally employed only van der
Waals (vdW) interactions for its energetics (EvdW).
These interactions are obtained from the PDB file by
constructing a spherical shell of a specific radius
(usually 4-6 Å) around a particular atom, counting its
interaction partners and grouping them into a residue-
residue interaction matrix (contact-map). Each
interaction is then assigned a vdW interaction energy,
, that can either be a single mean-field number or
weighted according to the number of interactions.

Additional considerations on the number of nearest
neighbor residues to include or exclude can be
exploited to eliminate spurious interactions that could
arise purely from chain connectivity.

Towards a More Physically Reasonable
Energetic Description in the WSME Model

Since the original work of Munõz and Eaton, the 
WSME model with microstates from up to DSA (i.e. 
SSA + DSA) has been extensively employed to 
characterize the folding of the villin headpiece domain. 
In many of the recent works of Eaton and coworkers, 
a modified WSME model is employed in which they 
additionally account for the statistical weights of 
microstates with interactions between islands of 1s if 
they ‘see’ each other in the native structure. This 
model has been successful in reproducing several 
experimental variables and in predicting multiple 
folding pathways in Villin, in close agreement with 
all-atom MD simulations (Godoy-Ruiz et al., 2008; 
Kubelka et al., 2008; Henry et al., 2013).

Despite these successes, the basic energetics 
of the model where only vdW interactions are 
considered is not physically accurate. For example, 
one of the fundamental features of protein 
thermodynamics is the observation of cold 
denaturation that is thought to arise primarily from 
the positive heat capacity change upon unfolding 
(Baldwin, 2007). While the origins of the positive 
heat capacity change is debatable (Cooper, 1976; 
Munõz and Sanchez-Ruiz, 2004; Cooper, 2010), the 
fact that it is universally observed in protein 
systems suggests that any model that attempts to 
reproduce unfolding thermodynamics should also 
capture this phenomenon. However, the basic 
WSME model does not reproduce cold 
denaturation.

Second, the surface of a protein is highly diverse
with a specific pattern of charged residues. These
charged residues aid in better protein solubility, ligand/
co-factor binding and folding. Many protein active
sites are inherently frustrated due to strong
electrostatic repulsion between like-charged groups.
This energetic frustration though undesired at the level
of thermodynamic stability is however functionally
critical. It has been shown through multiple
independent approaches that there is a delicate
balance between folding speed/stability and functional
requirements (Shea et al., 2000; Ferreiro et al., 2007;
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Levy et al., 2007; Ferreiro et al., 2011; Gosavi, 2013;
Ferreiro et al., 2014). For example, a spatially close
cluster of negatively charged residues coordinate the
binding to Ca2+/Mg2+/Zn2+ ions, while a similar spatial
cluster of positively charged residues determine the
binding strength to the negatively charged DNA
backbone. From the viewpoint of Go-potentials
(including the basic WSME model), such repulsive
interactions would still be considered attractive and
aiding in folding, while in reality their effect is the
completely opposite.

Introducing Solvation and Electrostatic Effects
into the WSME Model

The question then is how can these basic terms be
introduced into the WSME model without
compromising on the number of thermodynamic
parameters. The ability to rapidly calculate the total
partition function Z, allows for a simple approach to
parameterize the model through quantitatively
reproducing equilibrium experimental observables even
on proteins as large as 200 residues. This is
particularly possible when the data is available from
differential scanning calorimetry measurements
(DSC) that is also termed as the heat capacity profile
(Cp). The advantage of a heat capacity profile over
other experimental observations is multi-fold: a) it
reports on the global unfolding thermodynamics and
not local changes in structure, b) subtle structural
changes in the folded or unfolded states can have
strong effects in the pre- and post-transition DSC
baselines, respectively, and that are generally invisible
in other macroscopic experiments like CD or
fluorescence, c) Cp and hence the temperature of
cold denaturation can be directly estimated by
quantitatively analyzing the heat capacity profile, and
d) importantly, no assumptions (in terms of the signals)
need to be made when calculating the DSC profile
from the WSME model (or any statistical model, for
that matter) as it can be directly obtained from the
energetic fluctuations or from the derivative of the
partition function as follows

In this regard, the structurally similar proteins

hen egg-white lysozyme (HEWL) and bovine 
lactalbumin (BLA) serve as critical systems to 
evaluate the performance of coarse-grained models. 
They possess near-identical structures in terms of 
the positions of the C-atoms (C RMSD ~1.5 Å), 
but exhibit widely different melting temperatures of 
320 K and 351 K, respectively (Halskau et al., 
2008). The corresponding heat capacity profiles 
display dramatic differences in their broadness 
indicating that it does not arise from the 
temperature dependence of the unfolding enthalpy. 
A quantification of the sharpness of the heat 
capacity profile based on the variable barrier model 
(Munõz and Sanchez-Ruiz, 2004) revealed a large 
difference in thermodynamic barriers (~33 kJ/mol). 
It has been shown that this difference arises from 
the specific functionally critical distribution of 
charged residues on the protein surface (Halskau et 
al., 2008).

The availability of the heat capacity profile of
both proteins in absolute units enabled a direct
parameterization of the functional form of the heat
capacity term (Gsolv) and the magnitude of the
effective dielectric constant (eff) in the electrostatic
interaction energy term (Eelec) of the WSME
model.For the former, the solvation free energyGstab
is assumed to scale with the number of intra-molecular
interactions within that microstate (xcont) with the
proportionality constant being the heat capacity change

upon forming a native contact ( cont
pC ). Thus, the

functional form of solvation free energy, according to
the fundamental dependencies of enthalpy and entropy
on temperature, is

   , lnm n cont
solv cont p ref ref

CG x T T T T T      

where Tref is the reference temperature and is set to
the convergence temperature of 385 K (Robertson
and Murphy, 1997). It is important to note that this
approach in introducing solvation (Naganathan, 2012)
is similar to two previous works that relied on
estimating the accessible surface areas (ASAs) for
various microstates from either the SSA-based
approach (Garcia-Mira et al., 2002) or the exact
solution (Bruscolini and Naganathan, 2011). However,
such methods are intrinsically cumbersome due to the
additional approximations introduced in calculating
ASAs and their reliance on the empirical parameters
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of Freire and coworkers that relate the polar and apolar
ASAs to the heat capacity change (Gomez et al.,
1995).

For electrostatics, a Debye-Hückel (DH)
approximation is employed to account for interactions
between charged residues. This automatically includes
ionic-strength (I) and temperature (T) dependence in
its energy function apart from an effective dielectric
constant eff.

 
,

expi j

elec Coulomb ij
m n eff ij

q q
E K r

r



 

where KCoulomb is the Coulomb constant (1389 kJ.Å/
mol), qi is the charge on the atom i, rij is the distance
between charged atoms of residuesi and j and 1/ is
the Debye screening length. The energetics of the
new model now includes a van der Waals interactions
term (EvdW), solvation free energy term (Gstab) and
an electrostatic term (Eelec).

,
stab
m n vdW elec solvG E E G   

thus making it more realistic (Naganathan, 2012)
compared to the older versions that relied solely on
vdW interactions. The solvation term, in particular,
introduces small temperature dependence in the
stabilization free energy that is sufficient enough to
capture cold denaturation (see below).

The heat capacity profiles of HEWL and apo-
BLA were reproduced following an iterative and a
well-constrained approach employing identical
thermodynamic parameters. This resulted in an
effective dielectric constant of 29 and a heat capacity
change per contact of –0.23 J mol–1 K–1. It is
important to note the difference in their
thermodynamic behaviors from the perspective of the
model originates purely from the contact-map and
hence from the distribution of charged residues. The
model was also able to capture the large differences
in thermodynamic barriers resulting in values of ~37
kJ/mol and ~13 kJ/mol at midpoint temperatures of
HEWL and BLA, respectively (Fig. 1B). This
magnitude is in accordance with independent estimates
from the variable barrier model analysis of the heat
capacity profiles (Halskau et al., 2008). Moreover,
the predicted structure of the intermediate states

(Naganathan, 2012) is consistent with experimental
observations (Halskau et al., 2005).

The approach proposed above to characterize
thermograms does not predict a priori the heat
capacity change upon unfolding given a structure, but
provides a simple and systematic avenue to quantify
them in terms of fundamental parameters, given a
particular experimental data. Therefore, the actual
magnitude of is expected to vary from protein to
protein, depending primarily on the degree of
hydrophobic packing and experimental solvent
conditions. The functional form, however, should be
robust enough to be applicable to multiple proteins. In
Fig. 2. we show the power of this approach in the
characterization of two structurally similar alpha-
helical proteins, LacR and CytR; the former is well
folded in the absence of DNA (Felitsky and Record,
2003) and the latter is intrinsically disordered under

Fig. 1: Blue and red represent HEWL and apo-BLA,
respectively. (A) Experimental DSC profiles (circles),
fit to HEWL (blue line) and predictions of apo-BLA
heat capacity profile for the different magnitudes of
the effective dielectric constant eff (red). (B) Free
energy profiles in kJ mol–1 under iso-stability
conditions as a function of the fraction of structured
residues. Adapted with permission from(Naganathan,
2012). Copyright 2012, American Chemical Society
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the same condition (Moody et al., 2011). We performed
an analysis similar to that of HEWL/BLA homologous
pair; the unfolding curve of LacR was exactly
reproduced using the WSME model with solvation
and electrostatics to obtain the fundamental
parameters together with the folded and unfolded
baselines. Once this is fixed, the contact-map and the
charge-distributions of LacR was substituted with that
of the folded CytR (obtained in the presence of DNA).
The conformational behavior of CytR was predicted
to be disordered in good agreement with experimental
observations (Fig. 2A) (Naganathan and Orozco,
2013). In parallel, the phenomenon of cold
denaturation can be captured and the predicted Tc
(cold denaturation midpoint) of ~253 K compares well
with the ~245 K estimated from a two-state analysis
of the LacR unfolding curve (Felitsky and Record,
2003). To our knowledge, this is the first time cold

denaturation is captured from the perspective of an
ensemble-based model. It is important to note that
conventional coarse-grained treatments are not
capable of the same (Naganathan, 2013).

Role of Electrostatics in Protein Folding
Thermodynamics

One interesting observation is the magnitude of the
effective dielectric constant (eff) that is predicted to
be 29 in close association with experiments
(Naganathan, 2012). This estimate is at odds with the
dielectric constant of ~78.5 that is conventionally used
to quantify the strength of two interacting charges in
water. Protein charged residues, on the other hand,
‘see’ each other across the protein surface or chain
that cannot be treated as a continuum of polarizable
water molecules; in other words, apart from the
charged/polar atoms, a significant fraction of the
protein’s surface is composed of weakly polarizable
hydrogen and carbon atoms from methylene and
methyl groups of side chains. Additionally, the motion
of atoms linked to each other through the protein chain
is restricted, thus limiting their response to local
changes in the electric field. This dynamical effect is
expected to further reduce the dielectric constant.
These considerations suggest that the magnitude of
the effective dielectric constant required to quantify
charge-charge interactions on the protein surface
should be lower than 78.5 and higher than ~4 which
is generally employed for hydrophobic protein interior,
as originally predicted by Warshel and co-workers
(Vicatos et al., 2009). Interestingly, Alexov and co-
workers reported dielectric constants of 20-30 for
charged residues on the protein surface employing a
smooth Gaussian-based dielectric function (Li et al.,
2013). A correlation of 0.9 and above is also generally
observed between the per-residue electrostatic
interaction energy calculated by the Debye-Hückel
approximation (with eff = 29) and the more
computationally intensive Tanford-Kirkwood (TK)
algorithm (Tanford and Kirkwood, 1957; Ibarra-
Molero et al., 1999) for several proteins (see below),
further validating the effective dielectric constant
estimate of 29.

Point Mutations

How reliable is the eff value of 29 in the context of
folding thermodynamics? To explore this, we compiled
a database of 138 single- and multiple-point mutations

Fig. 2: Blue and red represent CytR and LacR, respectively.
(A) far-UV CD monitored unfolding curves as
function of temperature and in the absence of DNA
reported in mean residue ellipticity units (MRE/1000).
F and U stand for the folded and unfolded baselines,
respectively, obtained by exactly fitting the unfolding
curve of LacR to the WSME model. Adapted with
permission from(Naganathan and Orozco, 2013).
Copyright 2013, American Chemical Society. (B)
Predicted folded state population with the roll-over
signifying cold-denaturation
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involving charged residues (charge reversal, addition
or deletion) from 16 different proteins and enzymes
and whose thermal unfolding curves are also available
(Naganathan, 2013). We reproduced the thermal
denaturation midpoint (Tm) of each of the wild-type
proteins exactly using the WSME model with
electrostatics and solvation by modulating a single
thermodynamic parameter, the strength of van der
Waals interactions (). Experimental mutations were
simply introduced through PyMol (The PyMOL
Molecular Graphics System) and the resulting
structure was employed to predict the melting curves
of the mutant proteins using identical parameters as
the WT. The charged status of ionic residues was
chosen according to the pH: D, E, K and R are charged
at pH 7.0 while H is additionally charged at pH 5.0.

We obtained a reasonable correlation of 0.65
between experiments and prediction with a slope of
0.59 (against an expected value of 1) and a near zero-
intercept of –0.45 K (Fig. 3A). The correlation
increases to 0.71 and the slope to 0.73 upon eliminating
just 5% of the mutants with maximum deviation from
the expected 1:1 correlation line. Importantly, the
overall success rate (fraction of true positives) is 81%
and increases to 90% when considering multiple-point
mutations.This suggests that the model captures the
changes in stability induced by even point mutations
of charged residues very well (Naganathan, 2013).
However, the correlation is not very high simply
because of the fact that point mutations in secondary
structural elements also modulate the intrinsic
secondary structure propensity, which is not taken
into consideration in this mean-field approach.

Mesophilic-Thermophilic Protein Pairs

The corollary to the above observation is that multiple
point mutations or changes in stabilities of homologues
arising specific charge-charge interactions should be
captured well by the model as large changes in
sequence is expected to average out the
conformational entropic effects. In this regard, it is
well known that proteins from thermophiles exhibit a
higher thermodynamic stability than their mesophilic
cousins due to a larger network of charge-charge
interactions (Kumar et al., 2000). If this is true, one
expects the model to perform very well in reproducing
the differences in Tms between mesophile-thermophile
protein pairs. To check for this, we compiled a

Fig. 3: (A) Experimental versus predicted changes in
stability of mutations involving charged residues.
Filled and open circles represent single and multiple
mutations and the dashed line is the 1:1 correlation
line. Mutants in the shaded quadrants are false
positives. (B) Predicted versus experimental changes
in the melting temperature (Tm) of thermophilic
proteins employing the respective mesophilic
proteins’ thermodynamic behavior as reference. The
pairs are CspB (1, 2), L30e (3), Hpr (4), RNase H (5),
Cyt C (6) and Che Y (7). Adapted with permission
from(Naganathan, 2013). Copyright 2013, American
Chemical Society. (C) Predicted changes in stability
employing the fully phosphorylated WT 4E-BP2
protein (pT20pT29, blue) as reference. Singly
phosphorylated pT29, pT20 and non-phosphorylated
variants are shown in green, magenta and red,
respectively. The dashed line represents the
experimental temperature. Adapted from (Gopi et al.,
2015), with permission from the PCCP Owner
Societies
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database of 7 mesophile-thermophile protein pairs,
whose melting temperatures are available under
identical experimental conditions. We followed a
similar procedure to that outlined for Fig. 3A: adjust
to reproduce the mesophilic proteins’ Tm and then
predict the stability of the corresponding thermophilic
variant using identical parameters.We obtained a
remarkable agreement between the experimental and
predicted melting temperatures of the thermophilic
proteins (Fig. 3B) with the latter consistently exhibiting
a higher Tm in all cases (Naganathan, 2013).

Modeling PTMs Involving Changes in Charge
Status

The WSME model with electrostatics is applicable
not just to simple point mutations but even post-
translational modifications (PTMs) like methylation,
phosphorylation etc. that change the charge-status of
residues. A recent extreme example is the
phosphorylation of the mammalian protein 4E-BP2
involved in translation initiation. 4E-BP2 is disordered
and functional in the absence of phosphorylation, while
step-wise phosphorylation at two specific threonine
residues (T20 and T29) increases the thermodynamic
stability in a graded manner that simultaneously
abrogates binding (Bah et al., 2015). To understand
this behavior, we used an approach similar to before
while assigning a charge of -2 for the phoshoryl groups
at pH 7.0. Since experimental unfolding curves are
not available, it was assumed that the doubly
phosphorylated form (pT20pT29) exhibits at least 80%
folded population at the experimental temperature of
293 K. With this unfolding curve as a reference (blue
in Fig. 3C), we systematically removed the phosphoryl
groups and simulated the unfolding curves in each
case while employing identical parameters for all
variants. We identified a trend with the variant pT29
exhibiting a folded population of ~67%, pT20 ~46%
and finally, the non-phosphorylated variant ~26%, in
tune with experimental observations. The work also
highlights how the phosphorylation status affects not
just the folding thermodynamics, but also the nature
of intermediate states populated during folding and in
its equilibrium ensemble (Gopi et al., 2015).

A Rapid Method for Identifying Stabilizing
Mutations

The analyses detailed until now involved the
characterization of known WT-mutant or mesophile-

thermophile protein pairs. However, an important
requirement is to identify mutations that can
specifically enhance protein stabilities and that can
be exploited in industrial or pharmaceutical
applications. To do so, we have developed a simple
and highly parallelizable methodology in which the
charges on the native structure are randomly shuffled
and the net electrostatic interaction energy calculated
in each case using the Debye-Hückel model with an
effective dielectric constant of 29 (Naganathan, 2013).
The charge shuffling procedure includes charge
neutralization or charge reversal on existing charged
residues and addition of charges on large polar side
chains (Q and N). The calculations are not
computationally demanding as up to 105 4-point
substitutions can be performed in just over 40 seconds
on a 2.8 GHz Intel Core i7 processor. The charge-
charge interaction energies are ranked and the best
performing mutants’ structures can be generated with
PyMol. The corresponding unfolding curves can then
be generated in a matter of seconds with the mutant
structures and the WT parameters. The advantage
of this approach over conventional procedures is multi-
fold: (a) we employ a small parameter set to
characterize the WT and hence no extra parameters
are needed for predicting the mutant behavior, (b)
highly parallelizable, (c) output is provided in the
experimentally accessible scale of melting
temperatures, which is not provided in any other
atomistic- or coarse-grained approaches know to us,
and (d) ensemble nature of folding is taken into
consideration with 2N microstates. While most
procedures employ just the native state or a small
collection of structures to predict mutational effects
(Guerois et al., 2002; Yin et al., 2007; Gribenko et
al., 2009).

Capturing Ionic-Strength Effects

An advantage of the DH-approximation employed in
the WSME model is that the effect of changes in
solution ionic strength on thermodynamic stabilities
of proteins can be directly predicted without additional
assumptions. It should be noted that the DH-
approximation is applicable only in the low ionic-
strength regime (<200 mM) and as an avenue to model
ion-shielding effects. It does not account for effects
of ions on water structure (chaotropic/kosmotropic
effects) or the non-trivial outcomes of ion-binding to
either the folded, unfolded or partially structured states.
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The folding thermodynamics of Fyn-SH3
presents an interesting case in this regard. While most
SH3 domains are super-stable (Tm>373 K at pH 7.0),
Fyn-SH3 uniquely displays reduced stability under the
same conditions (de Los Rios and Plaxco, 2005). It
has been shown before that this feature arises from a
unique spatially close distribution of negatively charged
residues on the protein surface that is functionally
critical. In fact, simple thermodynamic measurements
have shown that the stability change in Fyn-SH3 can
be well approximated by the DH electrostatics (de
Los Rios and Plaxco, 2005). Since the latest version
of the WSME modelexplicitly accounts for DH
effects, we test its performance by systematically
increasing the ionic strength value (I). We find a
continuous increase in the Tm of Fyn-SH3 until ~0.5
M beyond which it plateaus out (Fig. 4A). A good
correlation is accordingly observed between the
experimental chemical midpoint (Cm) and Tm with the
same plateauing effect observed only for high salt
concentrations (Fig. 4B). A related observation is the
remarkably tunable behavior observed in the one-state
downhill folding protein BBL (Garcia-Mira et al.,
2002). BBL is completely unfolded under acidic and
low ionic-strength conditions, but gradually attains
structure upon increase in ionic strength of the medium
(Desai et al., 2010).The model again captures this
observation (Fig. 4C) corroborating the experimental
interpretation that screening of the destabilizing
positive charges on the protein surface is the primary
origin of this unique behavior.

Intermediate States in Protein Folding

Charge-charge interactions have traditionally been
seen as influencing merely the folding thermodynamics
and manipulation of these interactions for stabilization
of proteins and enzymes without loss of function has
a long history (Loladze et al., 1999; Sanchez-Ruiz
and Makhatadze, 2001). However, the work of
Halskau et al. on HEWL/BLA demonstrated that they
have a wider role to play in determining the nature of
partially structured states populated during folding and
the effective thermodynamic barrier separating the
unfolded and folded states (Halskau et al., 2008). The
WSME model with electrostatics and solvation is able
to account for the experimentally observed differences
in the HEWL/BLA family providing computational
evidence for the same (Naganathan, 2012). There is
a possibility that this could simply be an isolated

observation. However, we have now established
through intensive research over the past few years
that electrostatic interactions can play a dominant role
in determining the nature of intermediates populated
during folding. For example, the protein Barstar has
been shown to fold through multiple intermediate states
through varied experimental techniques and from

Fig. 4: (A) Predicted changes in the melting temperature
(Tm) of Fyn-SH3 as a function of ionic strength. (B)
Same as in panel A, but by directly comparing the
experimental chemical midpoint (Cm) with the
predicted thermal midpoint. The line highlights the
good agreement between experiment and predictions
until 0.5 M ionic strength. (C) Blue represents the
unfolding curve of BBL at pH 3.0 and in the absence
of salt. The folded population and stability of BBL
increase continuously upon increasing the ionic
strength from 0 to 1.2 M (red)
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more than two decades of work (Lakshmikanth et
al., 2001; Bhuyan and Udgaonkar, 1999; Sridevi and
Udgaonkar, 2002; Sarkar et al., 2013).There is
however little computational evidence to the structural
features of the intermediate states and most
importantly, the underlying physico-chemical origin of
the complex folding behavior.

We have recently addressed this issue through
a combination of electrostatic calculations, statistical
mechanical modeling and all-atom MD simulations
(Naganathan et al., 2015). Briefly, Barstar is highly
frustrated electrostatically primarily due to 4 residues
D35, D39, E76 and E80, all of which are spatially
close providing a large acidic surface that is critical
for binding with Barnase (Fig. 5A, 5B). The WSME
model with electrostatics is able to capture the changes
in stability of Barstar upon mutations of these charged
residues quite well highlighting the robustness of the
calculation (Fig. 5C). The only outliers (mutants in
the fourth quadrant) arise from non-trivial non-native
interactions, which are not represented in the model.
The effective one-dimensional free energy profile in
the presence of electrostatic terms results in 2-3
intermediate states in agreement with experiments
(blue in Fig. 5D). Interestingly, upon switching off the
electrostatic term a near-perfect two-state-like free
energy profile was obtained, convincingly
demonstrating that the intermediates states arise from
destabilizing electrostatic energetics (black in Fig. 5D).
To identify the residues that contribute the most to
the destabilization energetics, we generated the
structure of all single point mutational variants of
charged residues; there are 24 charged residues in
Barstar, resulting in 48 charge reversal and deletion
variants.A clear correlation between stabilizing
interactions and population of intermediates was
observed from which residues E76 and E80 were
identified as critical for the population of intermediates,
thus addressing one of the long-standing questions on
the structural-thermodynamic origins of Barstar folding
complexity (Naganathan et al., 2015).

RNase H is another prototypical example of a
protein folding through multiple intermediate states
(Chamberlain et al., 1996; Raschke et al., 1999).
Recent hydrogen-exchange combined with mass
spectrometry (HX-MS) experiments indicate that the
protein folds through a single dominant macroscopic
pathway involving the condensation of specific

secondary structure elements (foldons) (Hu et al.,
2013). To test this, we calibrated the energetic terms
of the WSME model with electrostatics by
simultaneously reproducing the thermal and chemical
denaturation profiles of RNase H (Narayan and
Naganathan, 2014). Once calibrated, the various

Fig. 5: The relevant energy units are in kJ mol–1. (A)
Residue-wise charge-charge interaction energy as
calculated from the Debye-Hückel (DH)
approximation employed in the WSME model
(magenta) or from the Tanford-Kirkwood (TK)
algorithm (green). The shaded areas represent the
secondary structure elements of Barstar. (B)
Electrostatic potential energy surface highlighting
the large negative potential on the Barnase-binding
face of Barstar. Helices H2 and H4 are highlighted.
(C) Experimental versus predicted changes in
chemical midpoints. Blue represents the WT and the
dashed line is the 1:1 correlation line. (D) Free energy
profiles of Barstar in the presence and absence of
electrostatics in its energy function (blue and black,
respectively). The free energy profiles of E76Q and
E76K are shown in green and red, respectively. (Inset)
Equilibrium unfolding curves following the same
color code.Adapted with permission from(Naganathan
et al., 2015). Copyright 2015, American Chemical
Society
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experimental observations directly fall out of the
predictive model without additional parameterization.
The presence of intermediates can be directly inferred
from the one-dimensional free energy profiles that
indicate at least three on-pathway partially structured
states (I1, I2 and N*; Fig. 6A). Since the intermediate
states are high in free energy, they are only minimally
populated in equilibrium thermal/chemical denaturation
experiments (Fig. 6B), highlighting the fact that the
observation of sigmoidal unfolding curves is no
evidence for two-state folding.

Though specific intermediates are observed in
the 1D free-energy profiles of RNase H, the free
energies of I1, I2 and N* are the effective averages
over the statistical weights of millions of microstates.
Such a representation does not address the issue of
pathway complexity – a single dominant macroscopic
pathway? - or the structural features of the
intermediates. To do so, we constructed the so-called
single sequence approximation (SSA) landscape
(Garcia-Mira et al., 2002). In this approach, the
statistical weights of only those microstates that have
a single-stretch of folded residues (i.e. two or more
islands of 1s separated by 0s is not allowed) are
calculated, using identical parameters as the exact-
solution. The advantage of this approach is that it
reduces the conformational complexity from 2N to
N* (N+1)/2, while allowing for a simple way to
visualize them. Figure 6C plots the projected free
energy of the SSA microstates on to two coordinates
m and n in a spectral color-coding scale (low and
high free energies correspond to blue and red,
respectively), where, m is the starting residue and n
is the number of structured residues. For example,
the coordinate (42, 79) corresponds to the intermediate
I2 with 79 residues structured from and including 42,
and, whose structure can be directly obtained from
the PDB file. Importantly, most of the landscape is
disallowed (red) with a single valley of blue starting
from the unfolded state through I1, to I2 and then finally
through two alternate paths to the native state. The
path corresponding to the dashed line from I2 to N is
not observed experimentally and this is possibly
because of the slightly higher free energy associated
with this transition (~10 kJ mol–1). In effect, this
representation provides strong computational evidence
for the sequential folding mechanism in RNase H from
the perspective of an ensemble-based model (Narayan
and Naganathan, 2014).

Fig. 6: (A) One-dimensional free energy profiles of RNase
H at 0 M (blue), 3.8 M (green) and 6 M (red) urea,
respectively. (B) Changes in populations of different
macroscopic states as a function of urea. The
populations of I1 and I2 have been multiplied by a
factor of 3 for visual clarity. (C) The SSA landscape as
a function of the coordinates, the starting residue
(m) and the number of structured residues (n), at 298
K and 0 M urea concentration. A spectral color-coding
is employed going from low to high free energy (blue
to red). The arrows highlight the only possible path
for a protein molecule to fold. The dashed line
represents an alternate pathway that is not observed
in experiments. Adapted with permission from
(Narayan and Naganathan, 2014). Copyright 2014,
American Chemical Society
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Discussion

The WSME model can be rapidly parameterized
employing real experimental data (heat capacity
profiles, unfolding curves, HX data, NMR-derived
population of states), thus allowing for a physically
reasonable energy function. The latest version of the
WSME model (Naganathan, 2012; Naganathan, 2013)
now includes experimentally derived empirical terms
for solvation, a robust and highly predictive
electrostatic energy function and the conventional vdW
term for packing interactions. It therefore resembles
a force field in itself, but with only a minimal subset
of tunable parameters. Additionally, a simple sequence
dependent entropic penalty can be included from the
calorimetrically derived estimates of Freire and co-
workers (Daquino et al., 1996) or secondary-structure
dependent entropy from the statistical analysis of
Ramachandran maps of proteins (Muñoz and Serrano,
1994).

The magnitude of the parameters themselves is
very reasonable and can be compared to various
experimental or empirical estimates. For example, the
entropic penalty associated with fixing a residue in a
ordered conformation falls in the range between -11
to –20 J mol–1 K–1 per residue and varies slightly from
one protein to another, compared to the expected
values of –15 to –19 J mol–1 K–1 per residue derived
from various empirical estimates. The vdW interaction
energy per contact, falls in the range between -50 to
–70 J mol–1at 6 Å distance cut-off and is again
comparable to –46.1 J mol–1 calculated form Amber
force field parameters (Cornell et al., 1995). The
effective dielectric constant term of 29 for charged
residues on protein surface, as discussed before, is
also in agreement with the expectations from
independent works (Vicatos et al., 2009; Li et al.,
2013).

We propose that a direct quantification of
equilibrium unfolding curves provides a simple and
robust avenue to parameterize models and that such
data carries as much, if not more, information as
kinetic rate constants. It is important to note that this
avenue is not conventionally exploited in all-atom MD
simulations or other coarse-grained treatments. This
is simply because it is still challenging to rapidly
generate multiple unfolding curves from such
simulations and then systematically parameterize them
by adjusting any one of the several parameters. The

WSME model is advantageous in this regard, as it is 
not only rapid enough to characterize unfolding curves 
but also detailed enough to include the various 
energetic terms and account for the statistical nature 
of the folding process (i.e. an ensemble treatment). 
Also, to our knowledge, this is the only ensemble-
based treatment that can also reproduce experimental 
kinetic amplitudes and cold denaturation. However, 
artifacts can also arise from this approach because 
of its ‘local interactions form first and non-local later’ 
principle, despite the fact that this is intuitively 
expected and is also consistent with independent 
observations from large-scale MD simulations 
(Lindorff-Larsen et al., 2011), Gō-models 
(Naganathan and Orozco, 2011) and mutational 
analysis (Naganathan and Munõz, 2010). The 
implication is that, the model is not applicable to single-
or multi-domain proteins, whose folding involves long-
range condensation of structure, with little local 
structure formation; but it should be possible to 
accurately estimate the statistical weights of the 
various partially structured states even in such proteins 
by appropriately accounting for the excess entropy 
of disordered regions.

Apart from the examples provided above, the
WSME model with electrostatics and simplified
solvation has been employed in conjunction with
experiments to quantify the dynamic and
thermodynamic effect of protein surface electrostatics
in 4 homologous families (Naganathan, 2012), map
the conformational landscape of an intrinsically
disordered protein (Naganathan and Orozco, 2013),
model the effect of disorder in a repeat protein termed
the ‘domino-like destabilization mechanism’
(Sivanandan and Naganathan, 2013), decipher the
effect of functional constraints on folding (Naganathan
et al., 2015; Munshi and Naganathan, 2015),
understand the subtle effect of post-translational
modifications on disorder-order equilibrium (Gopi et
al., 2015), and even generate fitness landscape of
small proteins (Gopi et al., 2015). The ability of the
model to capture the folding features of proteins with
various topologies and in agreement with experiments
is possibly an indication that the underlying
assumptions (particularly the ensemble composition)
are more realistic than previously thought. We believe
that the WSME model is now poised to address
numerous questions in the field of protein folding
including the origins, magnitude and temperature
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dependence of pathway heterogeneity, structural-
energetic relations, quantifying disorder in statistical
thermodynamic terms and the effect of point mutations
on folding mechanism, function and hence disease.
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